Understanding the Linux Kernel, 3rd Edition
By DanielP. Bovet, Marco Cesati

Publisher: O'Reilly

Pub Date: November 2005

ISBN: 0-596-00565-2

Pages: 942

Table of Contents | Index
Overview

In order to thoroughly understand what makes Linux tick and why it works so well on a wide
variety of systems, you need to delve deep into the heart of the kernel. The kernel handles all
interactions between the CPU and the external world, and determines which programs will share
processor time, in what order. It manages limited memory so well that hundreds of processes can
share the system efficiently, and expertly organizes data transfers so that the CPU isn't kept
waiting any longer than necessary for the relatively slow disks.

The third edition of Understanding the Linux Kernel takes you on a guided tour of the most
significant data structures, algorithms, and programming tricks used in the kernel. Probing beyond
superficial features, the authors offer valuable insights to people who want to know how things
really work inside their machine. Important Intel-specific features are discussed. Relevant
segments of code are dissected line by line. But the book covers more than just the functioning of
the code; it explains the theoretical underpinnings of why Linux does things the way it does.

This edition of the book covers Version 2.6, which has seen significant changes to nearly every
kernel subsystem, particularly in the areas of memory management and block devices. The book
focuses on the following topics:

¢ Memory management, including file buffering, process swapping, and Direct memory Access
(DMA)

e The Virtual Filesystem layer and the Second and Third Extended Filesystems

e Process creation and scheduling

e Signals, interrupts, and the essential interfaces to device drivers

e Timing

e Synchronization within the kernel

e Interprocess Communication (IPC)

e Program execution

Understanding the Linux Kernel will acquaint you with all the inner workings of Linux, but it's more
than just an academic exercise. You'll learn what conditions bring out Linux's best performance,
and you'll see how it meets the challenge of providing good system response during process
scheduling, file access, and memory management in a wide variety of environments. This book will
help you make the most of your Linux system.

MEXT B

Understanding the Linux Kernel, 3rd Edition
By DanielP. Bovet, Marco Cesati

Publisher: O'Reilly

Pub Date: November 2005
ISBN: 0-596-00565-2
Pages: 942

Table of Contents | Index

Copyright
Preface

The Audience for This Book

Organization ofthe Material

Level of Description
Overview ofthe Book

Background Information

Conventions in This Book

How to Contact Us
Safari® Enabled

Acknowledgments

Chapter1. Introduction
Section1.1. LinuxVersus Other Unix-Like Kernels
Section1.2. Hardware Dependency
Section1.3. LinuxVersions
Section1.4. Basic Operating System Concepts
Section1.5. AnOverview ofthe Unix Filesystem
Section1.6. AnOverview of Unix Kernels
Chapter2. Memory Addressing
Section2.1. Memory Addresses
Section2.2. Segmentationin Hardware
Section2.3. Segmentationin Linux
Section2.4. PaginginHardware
Section2.5. PaginginLinux
Chapter3. Processes
Section3.1. Processes, Lightweight Processes, and Threads
Section3.2. Process Descriptor
Section3.3. Process Switch
Section3.4. Creating Processes
Section3.5. Destroying Processes
Chapter4. Interrupts and Exceptions
Section4.1. TheRole of Interrupt Signals
Section4.2. Interrupts and Exceptions
Section4.3. Nested Execution of Exception and Interrupt Handlers
Section4.4. Initializing the Interrupt Descriptor Table
Section4.5. Exception Handling
Section4.6. InterruptHandling
Section4.7. Softirgs and Tasklets
Section4.8. WorkQueues
Section4.9. Returningfrom Interrupts and Exceptions

Chapter5.

Kernel Synchronization

Section5.1. Howthe Kernel Services Requests

Section5.2. Synchronization Primitives

Section5.3. _Synchronizing Accessesto Kernel Data Structures

Section5.4. Examples of Race Condition Prevention

Chapter6. Timing Measurements

Section6.1. Clockand Timer Circuits

Section6.2. TheLinux Timekeeping Architecture

Section6.3. Updating the Time and Date

Section6.4. Updating System Statistics

Section6.5. Software Timers and Delay Functions

Section6.6. System Calls Related to Timing Measurements

Chapter7. Process Scheduling

Section7.1. Scheduling Policy
Section7.2. The Scheduling Algorithm
Section 7.3. Data Structures Used by the Scheduler

Section 7.4. Functions Used by the Scheduler

Section7.5. Runqueue Balancingin Multiprocessor Systems

Section7.6. System Calls Related to Scheduling

Chapter8. Memory Management

Section8.1. Page Frame Management

Section8.2. Memory AreaManagement

Section8.3. Noncontiguous Memory Area Management

Chapter9. Process Address Space

Section9.1. TheProcess's Address Space

Section9.2. The Memory Descriptor

Section9.3. Memory Regions

Section9.4. Page Fault Exception Handler

Section9.5. Creatingand Deleting a Process Address Space

Section9.6. Managingthe Heap
Chapter10. SystemCalls

Section10.1. POSIXAPIsand System Calls
Section10.2. System CallHandler and Service Routines

Section10.3. Enteringand Exiting a System Call

Section10.4. Parameter Passing

Section10.5. Kernel Wrapper Routines

Chapter11. Signals

Section11.1. TheRoleof Signals
Section11.2. GeneratingaSignal

Section11.3. Deliveringa Signal

Section11.4. System Calls Related to Signal Handling

Chapter12. The Virtual Filesystem

Section12.1. The Role ofthe Virtual Filesystem (VES)
Section12.2. VFS Data Structures
Section12.3. Filesystem Types

Section12.4. FilesystemHandling

Section12.5. Pathname Lookup

Section12.6. Implementations of VES System Calls
Section12.7. File Locking
Chapter 13. 1/0O Architecture and Device Drivers

Section13.1. 1/O Architecture
Section13.2. The Device Driver Model
Section13.3. DeviceFiles

Section13.4. Device Drivers

Section13.5. Character Device Drivers

Chapter 14. Block Device Drivers

Section14.1. Block Devices Handling

Section14.2. The Generic Block Layer
Section14.3. Thel/O Scheduler
Section14.4. Block Device Drivers

Section14.5. Opening aBlock Device File
Chapter15. The Page Cache

Section15.1. ThePage Cache

Section15.2. Storing Blocksinthe Page Cache

Section 15.3. Writing Dirty Pages to Disk

Section15.4. The sync(), fsync(), and fdatasync() System Calls
Chapter16. AccessingFiles

Section16.1. Readingand Writing a File

Section16.2. Memory Mapping
Section16.3. Direct|/O Transfers
Section16.4. Asynchronous|/O

Chapter17. Page Frame Reclaiming

Section17.1. ThePage Frame Reclaiming Algorithm

Section17.2. Reverse Mapping
Section17.3. Implementingthe PEFRA
Section17.4. Swapping
Chapter18. The Ext2 and Ext3 Filesystems
Section18.1. General Characteristics of Ext2
Section18.2. Ext2 Disk Data Structures
Section18.3. Ext2 Memory Data Structures
Section18.4. Creating the Ext2 Filesystem
Section18.5. Ext2 Methods

Section 18.6. Managing Ext2 Disk Space
Section18.7. The Ext3 Filesystem
Chapter19. Process Communication
Section19.1. Pipes

Section19.2. FIFOs

Section19.3. SystemVIPC

Section19.4. POSIXMessage Queues
Chapter20. Program ExZecution

Section20.1. Executable Files

Section20.2. Executable Formats

Section20.3. Execution Domains

Section20.4. TheexecFunctions

AppendixA. System Startup
SectionA.1. Prehistoric Age:the BIOS
SectionA.2. AncientAge:the BootLoader
SectionA.3. Middle Ages: the setup() Function
SectionA.4. Renaissance:the startup 32() Functions
SectionA.5. Modern Age: the start_kernel() Function

AppendixB. Modules
SectionB.1. ToBe (aModule) or Notto Be?
SectionB.2. Module Implementation

SectionB.3. Linkingand Unlinking Modules

SectionB.4. Linking Modules on Demand

Bibliography
Books on Unix Kernels

Books on the Linux Kernel

Books on PC Architecture and Technical Manuals on Intel Microprocessors

Other Online Documentation Sources

Research Papers Related to Linux Development
Aboutthe Authors

Colophon
Index

| 4 PREV NEXT B

=1

Understanding the Linux Kernel, Third Edition

by Daniel P. Bovet and Marco Cesati

Copyright © 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Darren Kelly
Production Services: Amy Parker
Cover Designer: Edie Freedman
Interior Designer: David Futato

Printing History:

November 2000: First Edition.
December 2002: Second Edition.
November 2005: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Linux series designations, Understanding the Linux Kernel, Third Edition, the
image of a man with a bubble, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00565-2

M]
e prey

=1

Preface

In the spring semester of 1997, we taught a course on operating systems based on Linux 2.0. The
idea was to encourage students to read the source code. To achieve this, we assigned term projects
consisting of making changes to the kernel and performing tests on the modified version. We also
wrote course notes for our students about a few critical features of Linux such as task switching and
task scheduling.

Out of this work and with a lot of support from our O'Reilly editor Andy Oram came the first edition
of Understanding the Linux Kernel at the end of 2000, which covered Linux 2.2 with a few
anticipations on Linux 2.4. The success encountered by this book encouraged us to continue along
this line. At the end of 2002, we came out with a second edition covering Linux 2.4. You are now
looking at the third edition, which covers Linux 2.6.

As in our previous experiences, we read thousands of lines of code, trying to make sense of them.
After all this work, we can say that it was worth the effort. We learned a lot of things you don't find
in books, and we hope we have succeeded in conveying some of this information in the following
pages.

e prey NEXT b

=1

The Audience for This Book

All people curious about how Linux works and why it is so efficient will find answers here. After
reading the book, you will find your way through the many thousands of lines of code, distinguishing
between crucial data structures and secondary onesin short, becoming a true Linux hacker.

Our work might be considered a guided tour of the Linux kernel: most of the significant data
structures and many algorithms and programming tricks used in the kernel are discussed. In many
cases, the relevant fragments of code are discussed line by line. Of course, you should have the
Linux source code on hand and should be willing to expend some effort deciphering some of the
functions that are not, for sake of brevity, fully described.

On another level, the book provides valuable insight to people who want to know more about the
critical design issues in a modern operating system. It is not specifically addressed to system
administrators or programmers; it is mostly for people who want to understand how things really
work inside the machine! As with any good guide, we try to go beyond superficial features. We offer
a background, such as the history of major features and the reasons why they were used.

e prey NEXT b

=1

Organization of the Material

When we began to write this book, we were faced with a critical decision: should we refer to a
specific hardware platform or skip the hardware-dependent details and concentrate on the pure
hardware-independent parts of the kernel?

Others books on Linux kernel internals have chosen the latter approach; we decided to adopt the
former one for the following reasons:

o Efficient kernels take advantage of most available hardware features, such as addressing
techniques, caches, processor exceptions, special instructions, processor control registers, and
so on. If we want to convince you that the kernel indeed does quite a good job in performing a
specific task, we must first tell what kind of support comes from the hardware.

e Even if a large portion of a Unix kernel source code is processor-independent and coded in C
language, a small and critical part is coded in assembly language. A thorough knowledge of the
kernel, therefore, requires the study of a few assembly language fragments that interact with
the hardware.

When covering hardware features, our strategy is quite simple: only sketch the features that are
totally hardware-driven while detailing those that need some software support. In fact, we are
interested in kernel design rather than in computer architecture.

Our next step in choosing our path consisted of selecting the computer system to describe. Although
Linux is now running on several kinds of personal computers and workstations, we decided to
concentrate on the very popular and cheap IBM-compatible personal computersand thus on the 80 x
86 microprocessors and on some support chips included in these personal computers. The term 80 x
86 microprocessor will be used in the forthcoming chapters to denote the Intel 80386, 80486,
Pentium, Pentium Pro, Pentium II, Pentium Ill, and Pentium 4 microprocessors or compatible
models. In a few cases, explicit references will be made to specific models.

One more choice we had to make was the order to follow in studying Linux components. We tried a
bottom-up approach: start with topics that are hardware-dependent and end with those that are
totally hardware-independent. In fact, we'll make many references to the 80 x 86 microprocessors in
the first part of the book, while the rest of it is relatively hardware-independent. Significant
exceptions are made in Chapter 13 and Chapter 14. In practice, following a bottom-up approach is
not as simple as it looks, because the areas of memory management, process management, and
filesystems are intertwined; a few forward referencesthat is, references to topics yet to be
explainedare unavoidable.

Each chapter starts with a theoretical overview of the topics covered. The material is then presented
according to the bottom-up approach. We start with the data structures needed to support the
functionalities described in the chapter. Then we usually move from the lowest level of functions to
higher levels, often ending by showing how system calls issued by user applications are supported.

=1 NExT

=1

Level of Description

Linux source code for all supported architectures is contained in more than 14,000 C and assembly
language files stored in about 1000 subdirectories; it consists of roughly 6 million lines of code,
which occupy over 230 megabytes of disk space. Of course, this book can cover only a very small
portion of that code. Just to figure out how big the Linux source is, consider that the whole source
code of the book you are reading occupies less than 3 megabytes. Therefore, we would need more
than 75 books like this to list all code, without even commenting on it!

So we had to make some choices about the parts to describe. This is a rough assessment of our
decisions:
e We describe process and memory management fairly thoroughly.
e We cover the Virtual Filesystem and the Ext2 and Ext3 filesystems, although many functions
are just mentioned without detailing the code; we do not discuss other filesystems supported

by Linux.

e We describe device drivers, which account for roughly 50% of the kernel, as far as the kernel
interface is concerned, but do not attempt analysis of each specific driver.

The book describes the official 2.6.11 version of the Linux kernel, which can be downloaded from the
web site http://www.kernel.org.

Be aware that most distributions of GNU/Linux modify the official kernel to implement new features
or to improve its efficiency. In a few cases, the source code provided by your favorite distribution
might differ significantly from the one described in this book.

In many cases, we show fragments of the original code rewritten in an easier-to-read but less
efficient way. This occurs at time-critical points at which sections of programs are often written in a
mixture of hand-optimized C and assembly code. Once again, our aim is to provide some help in
studying the original Linux code.

While discussing kernel code, we often end up describing the underpinnings of many familiar

features that Unix programmers have heard of and about which they may be curious (shared and
mapped memory, signals, pipes, symbolic links, and so on).

=3 NEXT

http://www.kernel.org

=1

Overview of the Book

To make life easier, Chapter 1, Introduction, presents a general picture of what is inside a Unix
kernel and how Linux competes against other well-known Unix systems.

The heart of any Unix kernel is memory management. Chapter 2, Memory Addressing, explains how
80 x 86 processors include special circuits to address data in memory and how Linux exploits them.

Processes are a fundamental abstraction offered by Linux and are introduced in Chapter 3,
Processes. Here we also explain how each process runs either in an unprivileged User Mode or in a
privileged Kernel Mode. Transitions between User Mode and Kernel Mode happen only through well-
established hardware mechanisms called interrupts and exceptions. These are introduced in Chapter
4, Interrupts and Exceptions.

In many occasions, the kernel has to deal with bursts of interrupt signals coming from different
devices and processors. Synchronization mechanisms are needed so that all these requests can be
serviced in an interleaved way by the kernel: they are discussed in Chapter 5, Kernel
Synchronization, for both uniprocessor and multiprocessor systems.

One type of interrupt is crucial for allowing Linux to take care of elapsed time; further details can be
found in Chapter 6, Timing Measurements.

Chapter 7, Process Scheduling, explains how Linux executes, in turn, every active process in the
system so that all of them can progress toward their completions.

Next we focus again on memory. Chapter 8, Memory Management, describes the sophisticated
techniques required to handle the most precious resource in the system (besides the processors, of
course): available memory. This resource must be granted both to the Linux kernel and to the user
applications. Chapter 9, Process Address Space, shows how the kernel copes with the requests for
memory issued by greedy application programs.

Chapter_10, System Calls, explains how a process running in User Mode makes requests to the
kernel, while Chapter 11, Signals, describes how a process may send synchronization signals to
other processes. Now we are ready to move on to another essential topic, how Linux implements the
filesystem. A series of chapters cover this topic. Chapter 12, The Virtual Filesystem, introduces a
general layer that supports many different filesystems. Some Linux files are special because they
provide trapdoors to reach hardware devices; Chapter 13, 1/0 Architecture and Device Drivers, and
Chapter_14, Block Device Drivers, offer insights on these special files and on the corresponding
hardware device drivers.

Another issue to consider is disk access time; Chapter 15, The Page Cache, shows how a clever use
of RAM reduces disk accesses, therefore improving system performance significantly. Building on the
material covered in these last chapters, we can now explain in Chapter 16, Accessing Files, how user
applications access normal files. Chapter 17, Page Frame Reclaiming, completes our discussion of
Linux memory management and explains the techniques used by Linux to ensure that enough
memory is always available. The last chapter dealing with files is Chapter 18, The Ext2 and Ext3
Filesystems, which illustrates the most frequently used Linux filesystem, namely Ext2 and its recent
evolution, Ext3.

The last two chapters end our detailed tour of the Linux kernel: Chapter 19, Process
Communication, introduces communication mechanisms other than signals available to User Mode
processes; Chapter 20, Program Execution, explains how user applications are started.

Last, but not least, are the appendixes: Appendix A, System Startup, sketches out how Linux is
booted, while Appendix B, Modules, describes how to dynamically reconfigure the running kernel,
adding and removing functionalities as needed. The Source Code Index includes all the Linux

symbols referenced in the book; here you will find the name of the Linux file defining each symbol
and the book's page number where it is explained. We think you'll find it quite handy.

@ Py | NEXT

[prcy |

Background Information

No prerequisites are required, except some skill in C programming language and perhaps some
knowledge of an assembly language.

@ prcy | NEXT B

=1

Conventions in This Book

The following is a list of typographical conventions used in this book:

Constant Wdth
Used to show the contents of code files or the output from commands, and to indicate source
code keywords that appear in code.

Italic

Used for file and directory names, program and command names, command-line options, and
URLs, and for emphasizing new terms.

| 4 PREV NEXT B

=1

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/understandlk/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

e prcv NExT

http://www.oreilly.com/catalog/understandlk/
http://www.oreilly.com

=1

Safari® Enabled

BOOKE OMLINE

When you see a Safari® Enabled icon on the cover of your favorite technology book, it
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

@ Py | NEXT

http://safari.oreilly.com

=1

Acknowledgments

This book would not have been written without the precious help of the many students of the
University of Rome school of engineering "Tor Vergata” who took our course and tried to decipher
lecture notes about the Linux kernel. Their strenuous efforts to grasp the meaning of the source code
led us to improve our presentation and correct many mistakes.

Andy Oram, our wonderful editor at O'Reilly Media, deserves a lot of credit. He was the first at
O'Reilly to believe in this project, and he spent a lot of time and energy deciphering our preliminary
drafts. He also suggested many ways to make the book more readable, and he wrote several
excellent introductory paragraphs.

We had some prestigious reviewers who read our text quite carefully. The first edition was checked
by (in alphabetical order by first name) Alan Cox, Michael Kerrisk, Paul Kinzelman, Raph Levien, and
Rik van Riel.

The second edition was checked by Erez Zadok, Jerry Cooperstein, John Goerzen, Michael Kerrisk,
Paul Kinzelman, Rik van Riel, and Walt Smith.

This edition has been reviewed by Charles P. Wright, Clemens Buchacher, Erez Zadok, Raphael
Finkel, Rik van Riel, and Robert P. J. Day. Their comments, together with those of many readers
from all over the world, helped us to remove several errors and inaccuracies and have made this
book stronger.

Marco Cesati
July 2005

Daniel P. Bovet

=1

=1

Chapter 1. Introduction

Linux*1 is a member of the large family of Unix-like operating systems . A relative newcomer
experiencing sudden spectacular popularity starting in the late 1990s, Linux joins such well-known
commercial Unix operating systems as System V Release 4 (SVR4), developed by AT&T (now owned
by the SCO Group); the 4.4 BSD release from the University of California at Berkeley (4.4BSD);
Digital UNIX from Digital Equipment Corporation (now Hewlett-Packard); AIX from IBM; HP-UX from
Hewlett-Packard; Solaris from Sun Microsystems; and Mac OS X from Apple Computer, Inc. Beside
Linux, a few other opensource Unix-like kernels exist, such as FreeBSD , NetBSD , and OpenBSD .

FTLINUX®is aregistered trademark of Linus Torvalds.

Linux was initially developed by Linus Torvalds in 1991 as an operating system for IBM-compatible
personal computers based on the Intel 80386 microprocessor. Linus remains deeply involved with
improving Linux, keeping it up-to-date with various hardware developments and coordinating the
activity of hundreds of Linux developers around tri: world. Over the years, developers have worked
to make Linux available on other architectures, including Hewlett-Packard's Alpha, Intel's Itanium,
AMD's AMD64, PowerPC, and IBM's zSeries.

One of the more appealing benefits to Linux is that it isn't a commercial operating system: its source
code under the GNU General Public License (GPL) 1is open and available to anyone to study (as we
will infthis book); if you download the code (the official site is http://www.kernel.org) or check the
sources on a Linux CD, you will be able to explore, from top to bottom, one of the most successful
modern operating systems. This book, in fact, assumes you have the source code on hand and can
apply what we say to your own explorations.

[1The GNU projectis coordinated by the Free Software Foundation, Inc. (http://www.gnu.org); its aim is to implement a whole operating
system freely usable by everyone. The availability of a GNU C compiler has been essential for the success of the Linux project.

Technically speaking, Linux is a true Unix kernel, although it is not a full Unix operating system
because it does not include all the Unix applications, such as filesystem utilities, windowing systems
and graphical desktops, system administrator commands, text editors, compilers, and so on.
However, because most of these programs are freely available under the GPL, they can be installed
in every Linux-based system.

Because the Linux kernel requires so much additional software to provide a useful environment,
many Linux users prefer to rely on commercial distributions, available on CD-ROM, to get the code
included in a standard Unix system. Alternatively, the code may be obtained from several different
sites, for instance http://www.kernel.org. Several distributions put the Linux source code in the
/usr/src/linux directory. In the rest of this book, all file pathnames will refer implicitly to the Linux
source code directory.

=3 NEXT

http://www.kernel.org
http://www.gnu.org
http://www.kernel.org

=1

1.1. Linux Versus Other Unix-Like Kernels

The various Unix-like systems on the market, some of which have a long history and show signs of
archaic practices, differ in many important respects. All commercial variants were derived from
either SVR4 or 4.4BSD, and all tend to agree on some common standards like IEEE's Portable
Operating Systems based on Unix (POSIX) and X/Open's Common Applications Environment (CAE).

The current standards specify only an application programming interface (APl)that is, a well-defined
environment in which user programs should run. Therefore, the standards do not impose any
restriction on internal design choices of a compliant kernel.[X1

[l As a matter of fact, several non-Unix operating systems, such as Windows NT and its descendents, are POSIX-compliant.

To define a common user interface, Unix-like kernels often share fundamental design ideas and
features. In this respect, Linux is comparable with the other Unix-like operating systems. Reading
this book and studying the Linux kernel, therefore, may help you understand the other Unix
variants, too.

The 2.6 version of the Linux kernel aims to be compliant with the IEEE POSIX standard. This, of
course, means that most existing Unix programs can be compiled and executed on a Linux system
with very little effort or even without the need for patches to the source code. Moreover, Linux
includes all the features of a modern Unix operating system, such as virtual memory, a virtual
filesystem, lightweight processes, Unix signals , SVR4 interprocess communications, support for
Symmetric Multiprocessor (SMP) systems, and so on.

When Linus Torvalds wrote the first kernel, he referred to some classical books on Unix internals,
like Maurice Bach's The Design of the Unix Operating System (Prentice Hall, 1986). Actually, Linux
still has some bias toward the Unix baseline described in Bach's book (i.e., SVR2). However, Linux
doesn't stick to any particular variant. Instead, it tries to adopt the best features and design choices
of several different Unix kernels.

The following list describes how Linux competes against some well-known commercial Unix kernels:

Monolithic kernel

It is a large, complex do-it-yourself program, composed of several logically different
components. In this, it is quite conventional; most commercial Unix variants are monolithic.
(Notable exceptions are the Apple Mac OS X and the GNU Hurd operating systems, both
derived from the Carnegie-Mellon's Mach, which follow a microkernel approach.)

Compiled and statically linked traditional Unix kernels

Most modern kernels can dynamically load and unload some portions of the kernel code
(typically, device drivers), which are usually called modules . Linux's support for modules is
very good, because it is able to automatically load and unload modules on demand. Among
the main commercial Unix variants, only the SVR4.2 and Solaris kernels have a similar
feature.

Kernel threading

Some Unix kernels, such as Solaris and SVR4.2/MP, are organized as a set of kernel threads .
A kernel thread is an execution context that can be independently scheduled; it may be

associated with a user program, or it may run only some kernel functions. Context switches
between kernel threads are usually much less expensive than context switches between
ordinary processes, because the former usually operate on a common address space. Linux
uses kernel threads in a very limited way to execute a few kernel functions periodically;
however, they do not represent the basic execution context abstraction. (That's the topic of
the next item.)

Multithreaded application support

Most modern operating systems have some kind of support for multithreaded applications that
is, user programs that are designed in terms of many relatively independent execution flows
that share a large portion of the application data structures. A multithreaded user application
could be composed of many lightweight processes (LWP), which are processes that can
operate on a common address space, common physical memory pages, common opened files,
and so on. Linux defines its own version of lightweight processes, which is different from the
types used on other systems such as SVR4 and Solaris. While all the commercial Unix variants
of LWP are based on kernel threads, Linux regards lightweight processes as the basic
execution context and handles them via the nonstandard cl one() system call.

Preemptive kernel

When compiled with the "Preemptible Kernel” option, Linux 2.6 can arbitrarily interleave
execution flows while they are in privileged mode. Besides Linux 2.6, a few other conventional,
general-purpose Unix systems, such as Solaris and Mach 3.0 , are fully preemptive kernels.
SVR4.2/MP introduces some fixed preemption points as a method to get limited preemption
capability.

Multiprocessor support

Several Unix kernel variants take advantage of multiprocessor systems. Linux 2.6 supports
symmetric multiprocessing (SMP) for different memory models, including NUMA: the system
can use multiple processors and each processor can handle any task there is no discrimination
among them. Although a few parts of the kernel code are still serialized by means of a single
"big kernel lock ," it is fair to say that Linux 2.6 makes a near optimal use of SMP.

Filesystem

Linux's standard filesystems come in many flavors. You can use the plain old Ext2 filesystem if
you don't have specific needs. You might switch to Ext3 if you want to avoid lengthy filesystem
checks after a system crash. If you'll have to deal with many small files, the ReiserFS
filesystem is likely to be the best choice. Besides Ext3 and ReiserFS, several other journaling
filesystems can be used in Linux; they include IBM AIX's Journaling File System (JFS) and
Silicon Graphics IRIX 's XFS filesystem. Thanks to a powerful object-oriented Virtual File
System technology (inspired by Solaris and SVR4), porting a foreign filesystem to Linux is
generally easier than porting to other kernels.

STREAMS

Linux has no analog to the STREAMS 1/0 subsystem introduced in SVR4, although it is
included now in most Unix kernels and has become the preferred interface for writing device
drivers, terminal drivers, and network protocols.

This assessment suggests that Linux is fully competitive nowadays with commercial operating
systems. Moreover, Linux has several features that make it an exciting operating system.
Commercial Unix kernels often introduce new features to gain a larger slice of the market, but these
features are not necessarily useful, stable, or productive. As a matter of fact, modern Unix kernels
tend to be quite bloated. By contrast, Linuxtogether with the other open source operating

systemsdoesn’'t suffer from the restrictions and the conditioning imposed by the market, hence it can
freely evolve according to the ideas of its designers (mainly Linus Torvalds). Specifically, Linux offers
the following advantages over its commercial competitors:

Linux is cost-free

You can install a complete Unix system at no expense other than the hardware (of course).

Linux is fully customizable in all its components

Thanks to the compilation options, you can customize the kernel by selecting only the features
really needed. Moreover, thanks to the GPL, you are allowed to freely read and modify the
source code of the kernel and of all system programs.[*1

[*1 Many commercial companies are now supporting their products under Linux. However, many of them
aren't distributed under an open source license, so you might not be allowed to read or modify their source
code.

Linux runs on low-end, inexpensive hardware platforms

You are able to build a network server using an old Intel 80386 system with 4 MB of RAM.

Linux is powerful

Linux systems are very fast, because they fully exploit the features of the hardware
components. The main Linux goal is efficiency, and indeed many design choices of commercial
variants, like the STREAMS 1/0 subsystem, have been rejected by Linus because of their
implied performance penalty.

Linux developers are excellent programmers

Linux systems are very stable; they have a very low failure rate and system maintenance
time.

The Linux kernel can be very small and compact

It is possible to fit a kernel image, including a few system programs, on just one 1.44 MB
floppy disk. As far as we know, none of the commercial Unix variants is able to boot from a
single floppy disk.

Linux is highly compatible with many common operating systems

Linux lets you directly mount filesystems for all versions of MS-DOS and Microsoft Windows ,
SVR4, OS/2 , Mac OS X , Solaris , SunOS , NEXTSTEP , many BSD variants, and so on. Linux
also is able to operate with many network layers, such as Ethernet (as well as Fast Ethernet,
Gigabit Ethernet, and 10 Gigabit Ethernet), Fiber Distributed Data Interface (FDDI), High
Performance Parallel Interface (HIPPI), IEEE 802.11 (Wireless LAN), and IEEE 802.15
(Bluetooth). By using suitable libraries, Linux systems are even able to directly run programs
written for other operating systems. For example, Linux is able to execute some applications
written for MS-DOS, Microsoft Windows, SVR3 and R4, 4.4BSD, SCO Unix , Xenix , and others
on the 80x86 platform.

Linux is well supported

Believe it or not, it may be a lot easier to get patches and updates for Linux than for any
proprietary operating system. The answer to a problem often comes back within a few hours
after sending a message to some newsgroup or mailing list. Moreover, drivers for Linux are
usually available a few weeks after new hardware products have been introduced on the
market. By contrast, hardware manufacturers release device drivers for only a few commercial
operating systems usually Microsoft's. Therefore, all commercial Unix variants run on a
restricted subset of hardware components.

With an estimated installed base of several tens of millions, people who are used to certain features

that are standard under other operating systems are starting to expect the same from Linux. In that
regard, the demand on Linux developers is also increasing. Luckily, though, Linux has evolved under
the close direction of Linus and his subsystem maintainers to accommodate the needs of the masses.

=1

=1

1.2. Hardware Dependency

Linux tries to maintain a neat distinction between hardware-dependent and hardware-independent
source code. To that end, both the arch and the include directories include 23 subdirectories that
correspond to the different types of hardware platforms supported. The standard names of the
platforms are:

alpha

Hewlett-Packard's Alpha workstations (originally Digital, then Compaq; no longer
manufactured)

arm, arm26
ARM processor-based computers such as PDAs and embedded devices
cris
"Code Reduced Instruction Set" CPUs used by Axis in its thin-servers, such as web cameras or

development boards

frv

Embedded systems based on microprocessors of the Fujitsu's FR-V family

h8300

Hitachi h8/300 and h8S RISC 8/16-bit microprocessors

i386

IBM-compatible personal computers based on 80x86 microprocessors

ia64

Workstations based on the Intel 64-bit Itanium microprocessor

m32r

Computers based on the Renesas M32R family of microprocessors

m68k, m68knommu

Personal computers based on Motorola MC680x0 microprocessors

mips

Workstations based on MIPS microprocessors, such as those marketed by Silicon Graphics

parisc

Workstations based on Hewlett Packard HP 9000 PA-RISC microprocessors

ppc, ppc64

Workstations based on the 32-bit and 64-bit Motorola-IBM PowerPC microprocessors

s390

IBM ESA/390 and zSeries mainframes

sh, sh64
Embedded systems based on SuperH microprocessors developed by Hitachi and
STMicroelectronics

sparc, sparc64

Workstations based on Sun Microsystems SPARC and 64-bit Ultra SPARC microprocessors

um
User Mode Linux, a virtual platform that allows developers to run a kernel in User Mode

v850
NEC V850 microcontrollers that incorporate a 32-bit RISC core based on the Harvard
architecture

x86_64

Workstations based on the AMD's 64-bit microprocessorssuch Athlon and Opteron and Intel's
ia32e/EM64T 64-bit microprocessors

=1 NExT

=1

1.3. Linux Versions

Up to kernel version 2.5, Linux identified kernels through a simple numbering scheme. Each version
was characterized by three numbers, separated by periods. The first two numbers were used to
identify the version; the third number identified the release. The first version number, namely 2, has
stayed unchanged since 1996. The second version number identified the type of kernel: if it was
even, it denoted a stable version; otherwise, it denoted a development version.

As the name suggests, stable versions were thoroughly checked by Linux distributors and kernel
hackers. A new stable version was released only to address bugs and to add new device drivers.
Development versions, on the other hand, differed quite significantly from one another; kernel
developers were free to experiment with different solutions that occasionally lead to drastic kernel
changes. Users who relied on development versions for running applications could experience
unpleasant surprises when upgrading their kernel to a newer release.

During development of Linux kernel version 2.6, however, a significant change in the version
numbering scheme has taken place. Basically, the second number no longer identifies stable or
development versions; thus, nowadays kernel developers introduce large and significant changes in
the current kernel version 2.6. A new kernel 2.7 branch will be created only when kernel developers
will have to test a really disruptive change; this 2.7 branch will lead to a new current kernel version,
or it will be backported to the 2.6 version, or finally it will simply be dropped as a dead end.

The new model of Linux development implies that two kernels having the same version but different
release numbersfor instance, 2.6.10 and 2.6.11can differ significantly even in core components and

in fundamental algorithms. Thus, when a new kernel release appears, it is potentially unstable and

buggy. To address this problem, the kernel developers may release patched versions of any kernel,

which are identified by a fourth number in the version numbering scheme. For instance, at the time
this paragraph was written, the latest "stable" kernel version was 2.6.11.12.

Please be aware that the kernel version described in this book is Linux 2.6.11.

=1 NExT

=1

1.4. Basic Operating System Concepts

Each computer system includes a basic set of programs called the operating system. The most
important program in the set is called the kernel. It is loaded into RAM when the system boots and
contains many critical procedures that are needed for the system to operate. The other programs
are less crucial utilities; they can provide a wide variety of interactive experiences for the useras
well as doing all the jobs the user bought the computer forbut the essential shape and capabilities of
the system are determined by the kernel. The kernel provides key facilities to everything else on the
system and determines many of the characteristics of higher software. Hence, we often use the term
"operating system" as a synonym for "kernel."

The operating system must fulfill two main objectives:

e Interact with the hardware components, servicing all low-level programmable elements
included in the hardware platform.

e Provide an execution environment to the applications that run on the computer system (the so-
called user programs).

Some operating systems allow all user programs to directly play with the hardware components (a
typical example is MS-DOS). In contrast, a Unix-like operating system hides all low-level details
concerning the physical organization of the computer from applications run by the user. When a
program wants to use a hardware resource, it must issue a request to the operating system. The
kernel evaluates the request and, if it chooses to grant the resource, interacts with the proper
hardware components on behalf of the user program.

To enforce this mechanism, modern operating systems rely on the availability of specific hardware
features that forbid user programs to directly interact with low-level hardware components or to
access arbitrary memory locations. In particular, the hardware introduces at least two different
execution modes for the CPU: a nonprivileged mode for user programs and a privileged mode for the
kernel. Unix calls these User Mode and Kernel Mode , respectively.

In the rest of this chapter, we introduce the basic concepts that have motivated the design of Unix
over the past two decades, as well as Linux and other operating systems. While the concepts are
probably familiar to you as a Linux user, these sections try to delve into them a bit more deeply than
usual to explain the requirements they place on an operating system kernel. These broad
considerations refer to virtually all Unix-like systems. The other chapters of this book will hopefully
help you understand the Linux kernel internals.

1.4.1. Multiuser Systems

A multiuser system is a computer that is able to concurrently and independently execute several
applications belonging to two or more users. Concurrently means that applications can be active at
the same time and contend for the various resources such as CPU, memory, hard disks, and so on.
Independently means that each application can perform its task with no concern for what the
applications of the other users are doing. Switching from one application to another, of course, slows
down each of them and affects the response time seen by the users. Many of the complexities of
modern operating system kernels, which we will examine in this book, are present to minimize the
delays enforced on each program and to provide the user with responses that are as fast as possible.

Multiuser operating systems must include several features:

e An authentication mechanism for verifying the user's identity

e A protection mechanism against buggy user programs that could block other applications
running in the system

e A protection mechanism against malicious user programs that could interfere with or spy on
the activity of other users

¢ An accounting mechanism that limits the amount of resource units assigned to each user

To ensure safe protection mechanisms, operating systems must use the hardware protection
associated with the CPU privileged mode. Otherwise, a user program would be able to directly
access the system circuitry and overcome the imposed bounds. Unix is a multiuser system that
enforces the hardware protection of system resources.

1.4.2. Users and Groups

In a multiuser system, each user has a private space on the machine; typically, he owns some quota
of the disk space to store files, receives private mail messages, and so on. The operating system
must ensure that the private portion of a user space is visible only to its owner. In particular, it must
ensure that no user can exploit a system application for the purpose of violating the private space of
another user.

All users are identified by a unique number called the User ID, or UID. Usually only a restricted
number of persons are allowed to make use of a computer system. When one of these users starts a
working session, the system asks for a login name and a password. If the user does not input a valid
pair, the system denies access. Because the password is assumed to be secret, the user's privacy is
ensured.

To selectively share material with other users, each user is a member of one or more user groups ,
which are identified by a unique number called a user group ID . Each file is associated with exactly
one group. For example, access can be set so the user owning the file has read and write privileges,
the group has read-only privileges, and other users on the system are denied access to the file.

Any Unix-like operating system has a special user called root or superuser . The system
administrator must log in as root to handle user accounts, perform maintenance tasks such as
system backups and program upgrades, and so on. The root user can do almost everything, because
the operating system does not apply the usual protection mechanisms to her. In particular, the root
user can access every file on the system and can manipulate every running user program.

1.4.3. Processes

All operating systems use one fundamental abstraction: the process. A process can be defined either
as "an instance of a program in execution™ or as the "execution context” of a running program. In
traditional operating systems, a process executes a single sequence of instructions in an address
space; the address space is the set of memory addresses that the process is allowed to reference.
Modern operating systems allow processes with multiple execution flows that is, multiple sequences
of instructions executed in the same address space.

Multiuser systems must enforce an execution environment in which several processes can be active
concurrently and contend for system resources, mainly the CPU. Systems that allow concurrent
active processes are said to be multiprogramming or multiprocessing L1 It is important to
distinguish programs from processes; several processes can execute the same program
concurrently, while the same process can execute several programs sequentially.

[Some multiprocessing operating systems are not multiuser; an example is Microsoft Windows 98.

On uniprocessor systems, just one process can hold the CPU, and hence just one execution flow can
progress at a time. In general, the number of CPUs is always restricted, and therefore only a few
processes can progress at once. An operating system component called the scheduler chooses the
process that can progress. Some operating systems allow only nonpreemptable processes, which
means that the scheduler is invoked only when a process voluntarily relinquishes the CPU. But
processes of a multiuser system must be preemptable; the operating system tracks how long each
process holds the CPU and periodically activates the scheduler.

Unix is a multiprocessing operating system with preemptable processes . Even when no user is
logged in and no application is running, several system processes monitor the peripheral devices. In
particular, several processes listen at the system terminals waiting for user logins. When a user
inputs a login name, the listening process runs a program that validates the user password. If the
user identity is acknowledged, the process creates another process that runs a shell into which
commands are entered. When a graphical display is activated, one process runs the window
manager, and each window on the display is usually run by a separate process. When a user creates
a graphics shell, one process runs the graphics windows and a second process runs the shell into
which the user can enter the commands. For each user command, the shell process creates another
process that executes the corresponding program.

Unix-like operating systems adopt a process/kernel model . Each process has the illusion that it's the
only process on the machine, and it has exclusive access to the operating system services. Whenever
a process makes a system call (i.e., a request to the kernel, see Chapter 10), the hardware changes
the privilege mode from User Mode to Kernel Mode, and the process starts the execution of a kernel
procedure with a strictly limited purpose. In this way, the operating system acts within the execution
context of the process in order to satisfy its request. Whenever the request is fully satisfied, the
kernel procedure forces the hardware to return to User Mode and the process continues its execution
from the instruction following the system call.

1.4.4. Kernel Architecture

As stated before, most Unix kernels are monolithic: each kernel layer is integrated into the whole
kernel program and runs in Kernel Mode on behalf of the current process. In contrast, microkernel
operating systems demand a very small set of functions from the kernel, generally including a few
synchronization primitives, a simple scheduler, and an interprocess communication mechanism.
Several system processes that run on top of the microkernel implement other operating system-
layer functions, like memory allocators, device drivers, and system call handlers.

Although academic research on operating systems is oriented toward microkernels , such operating
systems are generally slower than monolithic ones, because the explicit message passing between
the different layers of the operating system has a cost. However, microkernel operating systems
might have some theoretical advantages over monolithic ones. Microkernels force the system
programmers to adopt a modularized approach, because each operating system layer is a relatively
independent program that must interact with the other layers through well-defined and clean
software interfaces. Moreover, an existing microkernel operating system can be easily ported to
other architectures fairly easily, because all hardware-dependent components are generally
encapsulated in the microkernel code. Finally, microkernel operating systems tend to make better
use of random access memory (RAM) than monolithic ones, because system processes that aren't
implementing needed functionalities might be swapped out or destroyed.

To achieve many of the theoretical advantages of microkernels without introducing performance
penalties, the Linux kernel offers modules . A module is an object file whose code can be linked to
(and unlinked from) the kernel at runtime. The object code usually consists of a set of functions that
implements a filesystem, a device driver, or other features at the kernel's upper layer. The module,
unlike the external layers of microkernel operating systems, does not run as a specific process.
Instead, it is executed in Kernel Mode on behalf of the current process, like any other statically
linked kernel function.

The main advantages of using modules include:

modularized approach

Because any module can be linked and unlinked at runtime, system programmers must
introduce well-defined software interfaces to access the data structures handled by modules.
This makes it easy to develop new modules.

Platform independence

Even if it may rely on some specific hardware features, a module doesn't depend on a fixed
hardware platform. For example, a disk driver module that relies on the SCSI standard works
as well on an IBM-compatible PC as it does on Hewlett-Packard's Alpha.

Frugal main memory usage

A module can be linked to the running kernel when its functionality is required and unlinked
when it is no longer useful; this is quite useful for small embedded systems.

No performance penalty

Once linked in, the object code of a module is equivalent to the object code of the statically
linked kernel. Therefore, no explicit message passing is required when the functions of the
module are invoked.[*1

[*1 A small performance penalty occurs when the module is linked and unlinked. However, this penalty can
be compared to the penalty caused by the creation and deletion of system processes in microkernel
operating systems.

e prcv NExT

=1

1.5. An Overview of the Unix Filesystem

The Unix operating system design is centered on its filesystem, which has several interesting
characteristics. We'll review the most significant ones, since they will be mentioned quite often in
forthcoming chapters.

1.5.1. Files

A Unix file is an information container structured as a sequence of bytes; the kernel does not
interpret the contents of a file. Many programming libraries implement higher-level abstractions,
such as records structured into fields and record addressing based on keys. However, the programs
in these libraries must rely on system calls offered by the kernel. From the user's point of view, files
are organized in a tree-structured namespace, as shown in Figure 1-1.

Figure 1-1. An example of a directory tree

All the nodes of the tree, except the leaves, denote directory names. A directory node contains
information about the files and directories just beneath it. A file or directory name consists of a
sequence of arbitrary ASCII characters,[*1 with the exception of / and of the null character \0. Most
filesystems place a limit on the length of a filename, typically no more than 255 characters. The
directory corresponding to the root of the tree is called the root directory. By convention, its name is
a slash (/). Names must be different within the same directory, but the same name may be used in
different directories.

[Some operating systems allow filenames to be expressed in many different alphabets, based on 16-bit extended coding of graphical
characters such as Unicode.

Unix associates a current working directory with each process (see the section "The Process/Kernel
Model" later in this chapter); it belongs to the process execution context, and it identifies the
directory currently used by the process. To identify a specific file, the process uses a pathname,
which consists of slashes alternating with a sequence of directory names that lead to the file. If the
first item in the pathname is a slash, the pathname is said to be absolute, because its starting point
is the root directory. Otherwise, if the first item is a directory name or filename, the pathname is
said to be relative, because its starting point is the process's current directory.

While specifying filenames, the notations "." and ".." are also used. They denote the current working
directory and its parent directory, respectively. If the current working directory is the root directory,

S and ".." coincide.

1.5.2. Hard and Soft Links

A filename included in a directory is called a file hard link, or more simply, a link. The same file may
have several links included in the same directory or in different ones, so it may have several
filenames.

The Unix command:

$ In pl p2

is used to create a new hard link that has the pathname p2 for a file identified by the pathname p1.
Hard links have two limitations:
e It is not possible to create hard links for directories. Doing so might transform the directory
tree into a graph with cycles, thus making it impossible to locate a file according to its name.

e Links can be created only among files included in the same filesystem. This is a serious
limitation, because modern Unix systems may include several filesystems located on different
disks and/or partitions, and users may be unaware of the physical divisions between them.

To overcome these limitations, soft links (also called symbolic links) were introduced a long time
ago. Symbolic links are short files that contain an arbitrary pathname of another file. The pathname
may refer to any file or directory located in any filesystem; it may even refer to a nonexistent file.

The Unix command:

$1n-s pl p2

creates a new soft link with pathname p2 that refers to pathname p1. When this command is
executed, the filesystem extracts the directory part of p2 and creates a new entry in that directory of
type symbolic link, with the name indicated by p2. This new file contains the name indicated by
pathname p1. This way, each reference to p2 can be translated automatically into a reference to p1.

1.5.3. File Types

Unix files may have one of the following types:

Regular file

Directory

Symbolic link

Block-oriented device file

e Character-oriented device file
e Pipe and named pipe (also called FIFO)
e Socket

The first three file types are constituents of any Unix filesystem. Their implementation is described in
detail in Chapter 18.

Device files are related both to 1/0 devices, and to device drivers integrated into the kernel. For
example, when a program accesses a device file, it acts directly on the 1/0 device associated with
that file (see Chapter 13).

Pipes and sockets are special files used for interprocess communication (see the section
"Synchronization and Critical Regions™" later in this chapter; also see Chapter 19).

1.5.4. File Descriptor and Inode

Unix makes a clear distinction between the contents of a file and the information about a file. With
the exception of device files and files of special filesystems, each file consists of a sequence of bytes.
The file does not include any control information, such as its length or an end-of-file (EOF) delimiter.

All information needed by the filesystem to handle a file is included in a data structure called an
inode. Each file has its own inode, which the filesystem uses to identify the file.

While filesystems and the kernel functions handling them can vary widely from one Unix system to
another, they must always provide at least the following attributes, which are specified in the POSIX
standard:

¢ File type (see the previous section)

¢ Number of hard links associated with the file

e File length in bytes

e Device ID (i.e., an identifier of the device containing the file)

¢ Inode number that identifies the file within the filesystem

e UID of the file owner

e User group ID of the file

e Several timestamps that specify the inode status change time, the last access time, and the
last modify time

e Access rights and file mode (see the next section)

1.5.5. Access Rights and File Mode
The potential users of a file fall into three classes:
e The user who is the owner of the file

e The users who belong to the same group as the file, not including the owner

e All remaining users (others)

There are three types of access rights -- read, write, and execute for each of these three classes.
Thus, the set of access rights associated with a file consists of nine different binary flags. Three

additional flags, called suid (Set User ID), sgid (Set Group ID), and sticky, define the file mode.
These flags have the following meanings when applied to executable files:

sui d

A process executing a file normally keeps the User ID (UID) of the process owner. However, if
the executable file has the sui d flag set, the process gets the UID of the file owner.

sgi d

A process executing a file keeps the user group ID of the process group. However, if the
executable file has the sgi d flag set, the process gets the user group ID of the file.

sticky

An executable file with the sti cky flag set corresponds to a request to the kernel to keep the
program in memory after its execution terminates.*1

[*1 This flag has become obsolete; other approaches based on sharing of code pages are now used (see
Chapter 9).

When a file is created by a process, its owner ID is the UID of the process. Its owner user group ID
can be either the process group ID of the creator process or the user group ID of the parent
directory, depending on the value of the sgi d flag of the parent directory.

1.5.6. File-Handling System Calls

When a user accesses the contents of either a regular file or a directory, he actually accesses some
data stored in a hardware block device. In this sense, a filesystem is a user-level view of the
physical organization of a hard disk partition. Because a process in User Mode cannot directly
interact with the low-level hardware components, each actual file operation must be performed in
Kernel Mode. Therefore, the Unix operating system defines several system calls related to file
handling.

All Unix kernels devote great attention to the efficient handling of hardware block devices to achieve
good overall system performance. In the chapters that follow, we will describe topics related to file
handling in Linux and specifically how the kernel reacts to file-related system calls. To understand
those descriptions, you will need to know how the main file-handling system calls are used; these
are described in the next section.

1.5.6.1. Opening afile

Processes can access only "opened" files. To open a file, the process invokes the system call:

fd = open(path, flag, node)

The three parameters have the following meanings:

path

Denotes the pathname (relative or absolute) of the file to be opened.

flag

Specifies how the file must be opened (e.g., read, write, read/write, append). It also can
specify whether a nonexisting file should be created.

node
Specifies the access rights of a newly created file.

This system call creates an "open file" object and returns an identifier called a file descriptor. An
open file object contains:

e Some file-handling data structures, such as a set of flags specifying how the file has been
opened, an of f set field that denotes the current position in the file from which the next
operation will take place (the so-called file pointer), and so on.

¢ Some pointers to kernel functions that the process can invoke. The set of permitted functions
depends on the value of the fl ag parameter.

We discuss open file objects in detail in Chapter 12. Let's limit ourselves here to describing some
general properties specified by the POSIX semantics.

o A file descriptor represents an interaction between a process and an opened file, while an open
file object contains data related to that interaction. The same open file object may be identified
by several file descriptors in the same process.

e Several processes may concurrently open the same file. In this case, the filesystem assigns a
separate file descriptor to each file, along with a separate open file object. When this occurs,
the Unix filesystem does not provide any kind of synchronization among the 1/0 operations
issued by the processes on the same file. However, several system calls such as fl ock() are
available to allow processes to synchronize themselves on the entire file or on portions of it

(see Chapter 12).

To create a new file, the process also may invoke the creat () system call, which is handled by the
kernel exactly like open().

1.5.6.2. Accessing an opened file

Regular Unix files can be addressed either sequentially or randomly, while device files and named
pipes are usually accessed sequentially. In both kinds of access, the kernel stores the file pointer in
the open file object that is, the current position at which the next read or write operation will take
place.

Sequential access is implicitly assumed: the read() andwite() system calls always refer to the
position of the current file pointer. To modify the value, a program must explicitly invoke the | seek(
) system call. When a file is opened, the kernel sets the file pointer to the position of the first byte in
the file (offset 0).

The | seek() system call requires the following parameters:

newof fset = | seek(fd, offset, whence);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

of f set
Specifies a signed integer value that will be used for computing the new position of the file
pointer

whence

Specifies whether the new position should be computed by adding the of f set value to the
number O (offset from the beginning of the file), the current file pointer, or the position of the
last byte (offset from the end of the file)

The read() system call requires the following parameters:

nread = read(fd, buf, count);

which have the following meanings:

fd
Indicates the file descriptor of the opened file

buf
Specifies the address of the buffer in the process's address space to which the data will be
transferred

count

Denotes the number of bytes to read

When handling such a system call, the kernel attempts to read count bytes from the file having the
file descriptor f d, starting from the current value of the opened file's offset field. In some casesend-
of-file, empty pipe, and so onthe kernel does not succeed in reading all count bytes. The returned
nread value specifies the number of bytes effectively read. The file pointer also is updated by adding
nread to its previous value. The wite() parameters are similar.

1.5.6.3. Closing afile

When a process does not need to access the contents of a file anymore, it can invoke the system
call:

res = close(fd);

which releases the open file object corresponding to the file descriptor f d. When a process
terminates, the kernel closes all its remaining opened files.

1.5.6.4. Renaming and deleting a file

To rename or delete a file, a process does not need to open it. Indeed, such operations do not act on
the contents of the affected file, but rather on the contents of one or more directories. For example,
the system call:

res = renane(ol dpath, newpath);
changes the name of a file link, while the system call:

res = unlink(pathnane);

decreases the file link count and removes the corresponding directory entry. The file is deleted only
when the link count assumes the value O.

=1

=1

1.6. An Overview of Unix Kernels

Unix kernels provide an execution environment in which applications may run. Therefore, the kernel
must implement a set of services and corresponding interfaces. Applications use those interfaces and
do not usually interact directly with hardware resources.

1.6.1. The Process/Kernel Model

As already mentioned, a CPU can run in either User Mode or Kernel Mode . Actually, some CPUs can
have more than two execution states. For instance, the 80 x 86 microprocessors have four different
execution states. But all standard Unix kernels use only Kernel Mode and User Mode.

When a program is executed in User Mode, it cannot directly access the kernel data structures or the
kernel programs. When an application executes in Kernel Mode, however, these restrictions no
longer apply. Each CPU model provides special instructions to switch from User Mode to Kernel Mode
and vice versa. A program usually executes in User Mode and switches to Kernel Mode only when
requesting a service provided by the kernel. When the kernel has satisfied the program’s request, it
puts the program back in User Mode.

Processes are dynamic entities that usually have a limited life span within the system. The task of
creating, eliminating, and synchronizing the existing processes is delegated to a group of routines in
the kernel.

The kernel itself is not a process but a process manager. The process/kernel model assumes that
processes that require a kernel service use specific programming constructs called system calls .
Each system call sets up the group of parameters that identifies the process request and then
executes the hardware-dependent CPU instruction to switch from User Mode to Kernel Mode.

Besides user processes, Unix systems include a few privileged processes called kernel threads with
the following characteristics:

e They run in Kernel Mode in the kernel address space.
e They do not interact with users, and thus do not require terminal devices.
e They are usually created during system startup and remain alive until the system is shut down.

On a uniprocessor system, only one process is running at a time, and it may run either in User or in
Kernel Mode. If it runs in Kernel Mode, the processor is executing some kernel routine. Figure 1-2
illustrates examples of transitions between User and Kernel Mode. Process 1 in User Mode issues a
system call, after which the process switches to Kernel Mode, and the system call is serviced.
Process 1 then resumes execution in User Mode until a timer interrupt occurs, and the scheduler is
activated in Kernel Mode. A process switch takes place, and Process 2 starts its execution in User
Mode until a hardware device raises an interrupt. As a consequence of the interrupt, Process 2
switches to Kernel Mode and services the interrupt.

Figure 1-2. Transitions between User and Kernel Mode

USER MODE
KERNEL MODE
Scheduler ot
\'1:'-’ b, 1‘_-.‘ I‘:"l":)
Sestem call Timer interup! Device interrupt
lime ——p

Unix kernels do much more than handle system calls; in fact, kernel routines can be activated in
several ways:

A process invokes a system call.

The CPU executing the process signals an exception, which is an unusual condition such as an
invalid instruction. The kernel handles the exception on behalf of the process that caused it.

A peripheral device issues an interrupt signal to the CPU to notify it of an event such as a
request for attention, a status change, or the completion of an 1/0 operation. Each interrupt
signal is dealt by a kernel program called an interrupt handler. Because peripheral devices
operate asynchronously with respect to the CPU, interrupts occur at unpredictable times.

A kernel thread is executed. Because it runs in Kernel Mode, the corresponding program must
be considered part of the kernel.

1.6.2. Process Implementation

To let the kernel manage processes, each process is represented by a process descriptor that
includes information about the current state of the process.

When the kernel stops the execution of a process, it saves the current contents of several processor
registers in the process descriptor. These include:

The program counter (PC) and stack pointer (SP) registers
The general purpose registers
The floating point registers

The processor control registers (Processor Status Word) containing information about the CPU
state

The memory management registers used to keep track of the RAM accessed by the process

When the kernel decides to resume executing a process, it uses the proper process descriptor fields
to load the CPU registers. Because the stored value of the program counter points to the instruction
following the last instruction executed, the process resumes execution at the point where it was
stopped.

When a process is not executing on the CPU, it is waiting for some event. Unix kernels distinguish

many wait states, which are usually implemented by queues of process descriptors ; each (possibly
empty) queue corresponds to the set of processes waiting for a specific event.

1.6.3. Reentrant Kernels

All Unix kernels are reentrant. This means that several processes may be executing in Kernel Mode
at the same time. Of course, on uniprocessor systems, only one process can progress, but many can
be blocked in Kernel Mode when waiting for the CPU or the completion of some 1/0 operation. For
instance, after issuing a read to a disk on behalf of a process, the kernel lets the disk controller
handle it and resumes executing other processes. An interrupt notifies the kernel when the device
has satisfied the read, so the former process can resume the execution.

One way to provide reentrancy is to write functions so that they modify only local variables and do
not alter global data structures. Such functions are called reentrant functions . But a reentrant
kernel is not limited only to such reentrant functions (although that is how some real-time kernels
are implemented). Instead, the kernel can include nonreentrant functions and use locking
mechanisms to ensure that only one process can execute a nonreentrant function at a time.

If a hardware interrupt occurs, a reentrant kernel is able to suspend the current running process
even if that process is in Kernel Mode. This capability is very important, because it improves the
throughput of the device controllers that issue interrupts. Once a device has issued an interrupt, it
waits until the CPU acknowledges it. If the kernel is able to answer quickly, the device controller will
be able to perform other tasks while the CPU handles the interrupt.

Now let's look at kernel reentrancy and its impact on the organization of the kernel. A kernel control
path denotes the sequence of instructions executed by the kernel to handle a system call, an
exception, or an interrupt.

In the simplest case, the CPU executes a kernel control path sequentially from the first instruction to
the last. When one of the following events occurs, however, the CPU interleaves the kernel control
paths :

e A process executing in User Mode invokes a system call, and the corresponding kernel control
path verifies that the request cannot be satisfied immediately; it then invokes the scheduler to
select a new process to run. As a result, a process switch occurs. The first kernel control path is
left unfinished, and the CPU resumes the execution of some other kernel control path. In this
case, the two control paths are executed on behalf of two different processes.

e The CPU detects an exceptionfor example, access to a page not present in RAMwhile running a
kernel control path. The first control path is suspended, and the CPU starts the execution of a
suitable procedure. In our example, this type of procedure can allocate a new page for the
process and read its contents from disk. When the procedure terminates, the first control path
can be resumed. In this case, the two control paths are executed on behalf of the same
process.

e A hardware interrupt occurs while the CPU is running a kernel control path with the interrupts
enabled. The first kernel control path is left unfinished, and the CPU starts processing another
kernel control path to handle the interrupt. The first kernel control path resumes when the
interrupt handler terminates. In this case, the two kernel control paths run in the execution
context of the same process, and the total system CPU time is accounted to it. However, the
interrupt handler doesn't necessarily operate on behalf of the process.

e An interrupt occurs while the CPU is running with kernel preemption enabled, and a higher
priority process is runnable. In this case, the first kernel control path is left unfinished, and the
CPU resumes executing another kernel control path on behalf of the higher priority process.
This occurs only if the kernel has been compiled with kernel preemption support.

Figure 1-3 illustrates a few examples of noninterleaved and interleaved kernel control paths. Three
different CPU states are considered:

e Running a process in User Mode (User)
e Running an exception or a system call handler (Excp)

e Running an interrupt handler (Intr)

Figure 1-3. Interleaving of kernel control paths

* ‘r# 1 —

KERNEL MODE

TIME

1.6.4. Process Address Space

Each process runs in its private address space. A process running in User Mode refers to private
stack, data, and code areas. When running in Kernel Mode, the process addresses the kernel data
and code areas and uses another private stack.

Because the kernel is reentrant, several kernel control pathseach related to a different processmay
be executed in turn. In this case, each kernel control path refers to its own private kernel stack.

While it appears to each process that it has access to a private address space, there are times when
part of the address space is shared among processes. In some cases, this sharing is explicitly
requested by processes; in others, it is done automatically by the kernel to reduce memory usage.

If the same program, say an editor, is needed simultaneously by several users, the program is
loaded into memory only once, and its instructions can be shared by all of the users who need it. Its
data, of course, must not be shared, because each user will have separate data. This kind of shared
address space is done automatically by the kernel to save memory.

Processes also can share parts of their address space as a kind of interprocess communication, using
the "shared memory" technique introduced in System V and supported by Linux.

Finally, Linux supports the map() system call, which allows part of a file or the information stored
on a block device to be mapped into a part of a process address space. Memory mapping can
provide an alternative to normal reads and writes for transferring data. If the same file is shared by
several processes, its memory mapping is included in the address space of each of the processes
that share it.

1.6.5. Synchronization and Critical Regions

Implementing a reentrant kernel requires the use of synchronization . If a kernel control path is
suspended while acting on a kernel data structure, no other kernel control path should be allowed to
act on the same data structure unless it has been reset to a consistent state. Otherwise, the
interaction of the two control paths could corrupt the stored information.

For example, suppose a global variable V contains the number of available items of some system
resource. The first kernel control path, A, reads the variable and determines that there is just one
available item. At this point, another kernel control path, B, is activated and reads the same
variable, which still contains the value 1. Thus, B decreases V and starts using the resource item.
Then A resumes the execution; because it has already read the value of V, it assumes that it can
decrease V and take the resource item, which B already uses. As a final result, V contains -1, and
two kernel control paths use the same resource item with potentially disastrous effects.

When the outcome of a computation depends on how two or more processes are scheduled, the code
is incorrect. We say that there is a race condition.

In general, safe access to a global variable is ensured by using atomic operations . In the previous
example, data corruption is not possible if the two control paths read and decrease V with a single,
noninterruptible operation. However, kernels contain many data structures that cannot be accessed
with a single operation. For example, it usually isn't possible to remove an element from a linked list
with a single operation, because the kernel needs to access at least two pointers at once. Any
section of code that should be finished by each process that begins it before another process can
enter it is called a critical region.[*1

1 Synchronization problems have been fully described in other works; we refer the interested reader to books on the Unix operating

systems (see the Bibliography).

These problems occur not only among kernel control paths but also among processes sharing
common data. Several synchronization techniques have been adopted. The following section
concentrates on how to synchronize kernel control paths.

1.6.5.1. Kernel preemption disabling

To provide a drastically simple solution to synchronization problems, some traditional Unix kernels
are nonpreemptive: when a process executes in Kernel Mode, it cannot be arbitrarily suspended and
substituted with another process. Therefore, on a uniprocessor system, all kernel data structures
that are not updated by interrupts or exception handlers are safe for the kernel to access.

Of course, a process in Kernel Mode can voluntarily relinquish the CPU, but in this case, it must
ensure that all data structures are left in a consistent state. Moreover, when it resumes its
execution, it must recheck the value of any previously accessed data structures that could be
changed.

A synchronization mechanism applicable to preemptive kernels consists of disabling kernel
preemption before entering a critical region and reenabling it right after leaving the region.

Nonpreemptability is not enough for multiprocessor systems, because two kernel control paths
running on different CPUs can concurrently access the same data structure.

1.6.5.2. Interrupt disabling

Another synchronization mechanism for uniprocessor systems consists of disabling all hardware
interrupts before entering a critical region and reenabling them right after leaving it. This
mechanism, while simple, is far from optimal. If the critical region is large, interrupts can remain
disabled for a relatively long time, potentially causing all hardware activities to freeze.

Moreover, on a multiprocessor system, disabling interrupts on the local CPU is not sufficient, and
other synchronization techniques must be used.

1.6.5.3. Semaphores

A widely used mechanism, effective in both uniprocessor and multiprocessor systems, relies on the
use of semaphores . A semaphore is simply a counter associated with a data structure; it is checked
by all kernel threads before they try to access the data structure. Each semaphore may be viewed as
an object composed of:

¢ An integer variable
e A list of waiting processes
e Two atomic methods: down() and up()

The down() method decreases the value of the semaphore. If the new value is less than O, the
method adds the running process to the semaphore list and then blocks (i.e., invokes the
scheduler). The up() method increases the value of the semaphore and, if its new value is greater
than or equal to O, reactivates one or more processes in the semaphore list.

Each data structure to be protected has its own semaphore, which is initialized to 1. When a kernel
control path wishes to access the data structure, it executes the down() method on the proper
semaphore. If the value of the new semaphore isn't negative, access to the data structure is
granted. Otherwise, the process that is executing the kernel control path is added to the semaphore
list and blocked. When another process executes the up() method on that semaphore, one of the
processes in the semaphore list is allowed to proceed.

1.6.5.4. Spin locks

In multiprocessor systems, semaphores are not always the best solution to the synchronization
problems. Some kernel data structures should be protected from being concurrently accessed by
kernel control paths that run on different CPUs. In this case, if the time required to update the data
structure is short, a semaphore could be very inefficient. To check a semaphore, the kernel must
insert a process in the semaphore list and then suspend it. Because both operations are relatively
expensive, in the time it takes to complete them, the other kernel control path could have already
released the semaphore.

In these cases, multiprocessor operating systems use spin locks . A spin lock is very similar to a
semaphore, but it has no process list; when a process finds the lock closed by another process, it
"spins" around repeatedly, executing a tight instruction loop until the lock becomes open.

Of course, spin locks are useless in a uniprocessor environment. When a kernel control path tries to
access a locked data structure, it starts an endless loop. Therefore, the kernel control path that is
updating the protected data structure would not have a chance to continue the execution and
release the spin lock. The final result would be that the system hangs.

1.6.5.5. Avoiding deadlocks

Processes or kernel control paths that synchronize with other control paths may easily enter a
deadlock state. The simplest case of deadlock occurs when process p1l gains access to data structure
a and process p2 gains access to b, but p1 then waits for b and p2 waits for a. Other more complex
cyclic waits among groups of processes also may occur. Of course, a deadlock condition causes a
complete freeze of the affected processes or kernel control paths.

As far as kernel design is concerned, deadlocks become an issue when the number of kernel locks
used is high. In this case, it may be quite difficult to ensure that no deadlock state will ever be
reached for all possible ways to interleave kernel control paths. Several operating systems, including
Linux, avoid this problem by requesting locks in a predefined order.

1.6.6. Signals and Interprocess Communication

Unix signals provide a mechanism for notifying processes of system events. Each event has its own
signal number, which is usually referred to by a symbolic constant such as SI GTERM There are two
kinds of system events:

Asynchronous notifications

For instance, a user can send the interrupt signal SI G NT to a foreground process by pressing
the interrupt keycode (usually Ctrl-C) at the terminal.

Synchronous notifications

For instance, the kernel sends the signal SI GSEGV to a process when it accesses a memory
location at an invalid address.

The POSIX standard defines about 20 different signals, 2 of which are user-definable and may be
used as a primitive mechanism for communication and synchronization among processes in User
Mode. In general, a process may react to a signal delivery in two possible ways:

e Ignore the signal.

e Asynchronously execute a specified procedure (the signal handler).
If the process does not specify one of these alternatives, the kernel performs a default action that
depends on the signal number. The five possible default actions are:

e Terminate the process.

¢ Write the execution context and the contents of the address space in a file (core dump) and
terminate the process.

e Ignore the signal.
e Suspend the process.
¢ Resume the process's execution, if it was stopped.

Kernel signal handling is rather elaborate, because the POSIX semantics allows processes to
temporarily block signals. Moreover, the Sl GKI LL and SI GSTOP signals cannot be directly handled by
the process or ignored.

AT&T's Unix System V introduced other kinds of interprocess communication among processes in
User Mode, which have been adopted by many Unix kernels: semaphores , message queues , and
shared memory . They are collectively known as System V IPC.

The kernel implements these constructs as IPC resources. A process acquires a resource by invoking
ashnget() , senget() , or nsgget () system call. Just like files, IPC resources are persistent: they
must be explicitly deallocated by the creator process, by the current owner, or by a superuser
process.

Semaphores are similar to those described in the section "Synchronization and Critical Regions,"
earlier in this chapter, except that they are reserved for processes in User Mode. Message queues
allow processes to exchange messages by using the nmsgsnd() and nsgrcv() system calls, which
insert a message into a specific message queue and extract a message from it, respectively.

The POSIX standard (IEEE Std 1003.1-2001) defines an IPC mechanism based on message queues,
which is usually known as POSIX message queues . They are similar to the System V IPC's message
queues, but they have a much simpler file-based interface to the applications.

Shared memory provides the fastest way for processes to exchange and share data. A process starts
by issuing a shnget () system call to create a new shared memory having a required size. After
obtaining the IPC resource identifier, the process invokes the shnmat () system call, which returns
the starting address of the new region within the process address space. When the process wishes to
detach the shared memory from its address space, it invokes the shmdt () system call. The
implementation of shared memory depends on how the kernel implements process address spaces.

1.6.7. Process Management

Unix makes a neat distinction between the process and the program it is executing. To that end, the
fork() and _exit() system calls are used respectively to create a new process and to terminate it,
while an exec() -like system call is invoked to load a new program. After such a system call is
executed, the process resumes execution with a brand new address space containing the loaded
program.

The process that invokes a fork() is the parent, while the new process is its child. Parents and
children can find one another because the data structure describing each process includes a pointer
to its immediate parent and pointers to all its immediate children.

A naive implementation of the fork() would require both the parent's data and the parent's code to
be duplicated and the copies assigned to the child. This would be quite time consuming. Current
kernels that can rely on hardware paging units follow the Copy-On-Write approach, which defers
page duplication until the last moment (i.e., until the parent or the child is required to write into a
page). We shall describe how Linux implements this technique in the section "Copy On Write" in

Chapter 9.

The _exit() system call terminates a process. The kernel handles this system call by releasing the
resources owned by the process and sending the parent process a Sl GCHLD signal, which is ignored
by default.

1.6.7.1. Zombie processes

How can a parent process inquire about termination of its children? The wai t 4() system call allows
a process to wait until one of its children terminates; it returns the process ID (PID) of the
terminated child.

When executing this system call, the kernel checks whether a child has already terminated. A special
zombie process state is introduced to represent terminated processes: a process remains in that
state until its parent process executes a wai t 4() system call on it. The system call handler extracts
data about resource usage from the process descriptor fields; the process descriptor may be
released once the data is collected. If no child process has already terminated when the wait 4()
system call is executed, the kernel usually puts the process in a wait state until a child terminates.

Many kernels also implement a wai t pi d() system call, which allows a process to wait for a specific
child process. Other variants of wai t 4() system calls are also quite common.

It's good practice for the kernel to keep around information on a child process until the parent issues
its wai t 4() call, but suppose the parent process terminates without issuing that call? The
information takes up valuable memory slots that could be used to serve living processes. For
example, many shells allow the user to start a command in the background and then log out. The
process that is running the command shell terminates, but its children continue their execution.

The solution lies in a special system process called init, which is created during system initialization.

When a process terminates, the kernel changes the appropriate process descriptor pointers of all the
existing children of the terminated process to make them become children of init. This process
monitors the execution of all its children and routinely issues wai t 4() system calls, whose side
effect is to get rid of all orphaned zombies.

1.6.7.2. Process groups and login sessions

Modern Unix operating systems introduce the notion of process groups to represent a "job"
abstraction. For example, in order to execute the command line:

$I1s | sort | nore

a shell that supports process groups, such as bash, creates a new group for the three processes
corresponding to | s, sort, and nore. In this way, the shell acts on the three processes as if they
were a single entity (the job, to be precise). Each process descriptor includes a field containing the
process group ID . Each group of processes may have a group leader, which is the process whose
PID coincides with the process group ID. A newly created process is initially inserted into the process
group of its parent.

Modern Unix kernels also introduce login sessions. Informally, a login session contains all processes
that are descendants of the process that has started a working session on a specific terminalusually,
the first command shell process created for the user. All processes in a process group must be in the
same login session. A login session may have several process groups active simultaneously; one of
these process groups is always in the foreground, which means that it has access to the terminal.
The other active process groups are in the background. When a background process tries to access
the terminal, it receives a Sl GI'TI Nor S| GTTOUT signal. In many command shells, the internal
commands bg and f g can be used to put a process group in either the background or the
foreground.

1.6.8. Memory Management

Memory management is by far the most complex activity in a Unix kernel. More than a third of this
book is dedicated just to describing how Linux handles memory management. This section illustrates
some of the main issues related to memory management.

1.6.8.1. Virtual memory

All recent Unix systems provide a useful abstraction called virtual memory . Virtual memory acts as
a logical layer between the application memory requests and the hardware Memory Management
Unit (MMU). Virtual memory has many purposes and advantages:

e Several processes can be executed concurrently.

e It is possible to run applications whose memory needs are larger than the available physical
memory.

e Processes can execute a program whose code is only partially loaded in memory.
e Each process is allowed to access a subset of the available physical memory.
e Processes can share a single memory image of a library or program.

¢ Programs can be relocatable that is, they can be placed anywhere in physical memory.

e Programmers can write machine-independent code, because they do not need to be concerned
about physical memory organization.

The main ingredient of a virtual memory subsystem is the notion of virtual address space. The set of
memory references that a process can use is different from physical memory addresses. When a
process uses a virtual address,[Z1 the kernel and the MMU cooperate to find the actual physical
location of the requested memory item.

[l These addresses have different nomenclatures, depending on the computer architecture. As we'll see in Chapter 2, Intel manuals
refertothemas"logicaladdresses.”

Today's CPUs include hardware circuits that automatically translate the virtual addresses into
physical ones. To that end, the available RAM is partitioned into page frames typically 4 or 8 KB in
lengthand a set of Page Tables is introduced to specify how virtual addresses correspond to physical
addresses. These circuits make memory allocation simpler, because a request for a block of
contiguous virtual addresses can be satisfied by allocating a group of page frames having
noncontiguous physical addresses.

1.6.8.2. Random access memory usage

All Unix operating systems clearly distinguish between two portions of the random access memory
(RAM). A few megabytes are dedicated to storing the kernel image (i.e., the kernel code and the
kernel static data structures). The remaining portion of RAM is usually handled by the virtual
memory system and is used in three possible ways:

e To satisfy kernel requests for buffers, descriptors, and other dynamic kernel data structures
e To satisfy process requests for generic memory areas and for memory mapping of files
e To get better performance from disks and other buffered devices by means of caches

Each request type is valuable. On the other hand, because the available RAM is limited, some
balancing among request types must be done, particularly when little available memory is left.
Moreover, when some critical threshold of available memory is reached and a page-frame-
reclaiming algorithm is invoked to free additional memory, which are the page frames most suitable
for reclaiming? As we will see in Chapter 17, there is no simple answer to this question and very
little support from theory. The only available solution lies in developing carefully tuned empirical
algorithms.

One major problem that must be solved by the virtual memory system is memory fragmentation .
Ideally, a memory request should fail only when the number of free page frames is too small.
However, the kernel is often forced to use physically contiguous memory areas. Hence the memory
request could fail even if there is enough memory available, but it is not available as one contiguous
chunk.

1.6.8.3. Kernel Memory Allocator

The Kernel Memory Allocator (KMA) is a subsystem that tries to satisfy the requests for memory
areas from all parts of the system. Some of these requests come from other kernel subsystems
needing memory for kernel use, and some requests come via system calls from user programs to
increase their processes' address spaces. A good KMA should have the following features:

e It must be fast. Actually, this is the most crucial attribute, because it is invoked by all kernel
subsystems (including the interrupt handlers).

¢ It should minimize the amount of wasted memory.
e It should try to reduce the memory fragmentation problem.

e It should be able to cooperate with the other memory management subsystems to borrow and
release page frames from them.

Several proposed KMAs, which are based on a variety of different algorithmic techniques, include:

Resource map allocator
e Power-of-two free lists

e McKusick-Karels allocator
¢ Buddy system

e Mach's Zone allocator

e Dynix allocator

e Solaris 's Slab allocator

As we will see in Chapter 8, Linux's KMA uses a Slab allocator on top of a buddy system.

1.6.8.4. Process virtual address space handling

The address space of a process contains all the virtual memory addresses that the process is allowed
to reference. The kernel usually stores a process virtual address space as a list of memory area
descriptors . For example, when a process starts the execution of some program via an exec()-like
system call, the kernel assigns to the process a virtual address space that comprises memory areas
for:

e The executable code of the program

e The initialized data of the program

e The uninitialized data of the program

e The initial program stack (i.e., the User Mode stack)

e The executable code and data of needed shared libraries

e The heap (the memory dynamically requested by the program)

All recent Unix operating systems adopt a memory allocation strategy called demand paging . With
demand paging, a process can start program execution with none of its pages in physical memory.
As it accesses a nonpresent page, the MMU generates an exception; the exception handler finds the
affected memory region, allocates a free page, and initializes it with the appropriate data. In a
similar fashion, when the process dynamically requires memory by using nal | oc(), or the brk()
system call (which is invoked internally by mal |1 oc()), the kernel just updates the size of the heap
memory region of the process. A page frame is assigned to the process only when it generates an
exception by trying to refer its virtual memory addresses.

Virtual address spaces also allow other efficient strategies, such as the Copy On Write strategy
mentioned earlier. For example, when a new process is created, the kernel just assigns the parent's
page frames to the child address space, but marks them read-only. An exception is raised as soon
the parent or the child tries to modify the contents of a page. The exception handler assigns a new
page frame to the affected process and initializes it with the contents of the original page.

1.6.8.5. Caching

A good part of the available physical memory is used as cache for hard disks and other block
devices. This is because hard drives are very slow: a disk access requires several milliseconds, which
is a very long time compared with the RAM access time. Therefore, disks are often the bottleneck in
system performance. As a general rule, one of the policies already implemented in the earliest Unix
system is to defer writing to disk as long as possible. As a result, data read previously from disk and
no longer used by any process continue to stay in RAM.

This strategy is based on the fact that there is a good chance that new processes will require data
read from or written to disk by processes that no longer exist. When a process asks to access a disk,
the kernel checks first whether the required data are in the cache. Each time this happens (a cache
hit), the kernel is able to service the process request without accessing the disk.

The sync() system call forces disk synchronization by writing all of the "dirty" buffers (i.e., all the
buffers whose contents differ from that of the corresponding disk blocks) into disk. To avoid data
loss, all operating systems take care to periodically write dirty buffers back to disk.

1.6.9. Device Drivers

The kernel interacts with 1/0 devices by means of device drivers . Device drivers are included in the
kernel and consist of data structures and functions that control one or more devices, such as hard
disks, keyboards, mouses, monitors, network interfaces, and devices connected to an SCSI bus.
Each driver interacts with the remaining part of the kernel (even with other drivers) through a
specific interface. This approach has the following advantages:

e Device-specific code can be encapsulated in a specific module.

e Vendors can add new devices without knowing the kernel source code; only the interface
specifications must be known.

e The kernel deals with all devices in a uniform way and accesses them through the same
interface.

e It is possible to write a device driver as a module that can be dynamically loaded in the kernel
without requiring the system to be rebooted. It is also possible to dynamically unload a module
that is no longer needed, therefore minimizing the size of the kernel image stored in RAM.

Figure 1-4 illustrates how device drivers interface with the rest of the kernel and with the processes.

Figure 1-4. Device driver interface

Device driver interface

20000

System call interface i

aaak

. Virtual File System

Keenel & character device files g [blockdevicefils)
Disk i
driver

Ity tty Mic. | [Speaker Disk Disk

ity
diriver

Some user programs (P) wish to operate on hardware devices. They make requests to the kernel
using the usual file-related system calls and the device files normally found in the /dev directory.
Actually, the device files are the user-visible portion of the device driver interface. Each device file
refers to a specific device driver, which is invoked by the kernel to perform the requested operation
on the hardware component.

At the time Unix was introduced, graphical terminals were uncommon and expensive, so only
alphanumeric terminals were handled directly by Unix kernels. When graphical terminals became
widespread, ad hoc applications such as the X Window System were introduced that ran as standard
processes and accessed the 1/0 ports of the graphics interface and the RAM video area directly.
Some recent Unix kernels, such as Linux 2.6, provide an abstraction for the frame buffer of the
graphic card and allow application software to access them without needing to know anything about
the 1/0 ports of the graphics interface (see the section "Levels of Kernel Support” in Chapter 13.)

e rrey NEXT

=2

Chapter 2. Memory Addressing

This chapter deals with addressing techniques. Luckily, an operating system is not forced to keep
track of physical memory all by itself; today's microprocessors include several hardware circuits to
make memory management both more efficient and more robust so that programming errors cannot
cause improper accesses to memory outside the program.

As in the rest of this book, we offer details in this chapter on how 80 x 86 microprocessors address
memory chips and how Linux uses the available addressing circuits. You will find, we hope, that
when you learn the implementation details on Linux's most popular platform you will better
understand both the general theory of paging and how to research the implementation on other
platforms.

This is the first of three chapters related to memory management; Chapter 8 discusses how the

kernel allocates main memory to itself, while Chapter 9 considers how linear addresses are assigned
to processes.

=1 NExT

=1

2.1. Memory Addresses

Programmers casually refer to a memory address as the way to access the contents of a memory
cell. But when dealing with 80 x 86 microprocessors, we have to distinguish three kinds of
addresses:

Logical address

Included in the machine language instructions to specify the address of an operand or of an
instruction. This type of address embodies the well-known 80 x 86 segmented architecture
that forces MS-DOS and Windows programmers to divide their programs into segments . Each
logical address consists of a segment and an offset (or displacement) that denotes the distance
from the start of the segment to the actual address.

Linear address (also known as virtual address)

A single 32-bit unsigned integer that can be used to address up to 4 GB that is, up to
4,294,967,296 memory cells. Linear addresses are usually represented in hexadecimal
notation; their values range from 0x00000000 to Oxffffffff.

Physical address

Used to address memory cells in memory chips. They correspond to the electrical signals sent
along the address pins of the microprocessor to the memory bus. Physical addresses are
represented as 32-bit or 36-bit unsigned integers.

The Memory Management Unit (MMU) transforms a logical address into a linear address by means of
a hardware circuit called a segmentation unit ; subsequently, a second hardware circuit called a
paging unit transforms the linear address into a physical address (see Figure 2-1).

Figure 2-1. Logical address translation

SEGMENTATION PAGING

Logical address b UNIT Physical address b

In multiprocessor systems, all CPUs usually share the same memory; this means that RAM chips
may be accessed concurrently by independent CPUs. Because read or write operations on a RAM chip
must be performed serially, a hardware circuit called a memory arbiter is inserted between the bus
and every RAM chip. Its role is to grant access to a CPU if the chip is free and to delay it if the chip is
busy servicing a request by another processor. Even uniprocessor systems use memory arbiters ,
because they include specialized processors called DMA controllers that operate concurrently with
the CPU (see the section "Direct Memory Access (DMA)" in Chapter 13). In the case of
multiprocessor systems, the structure of the arbiter is more complex because it has more input
ports. The dual Pentium, for instance, maintains a two-port arbiter at each chip entrance and
requires that the two CPUs exchange synchronization messages before attempting to use the
common bus. From the programming point of view, the arbiter is hidden because it is managed by
hardware circuits.

MEXT B

=1

2.2. Segmentation in Hardware

Starting with the 80286 model, Intel microprocessors perform address translation in two different
ways called real mode and protected mode . We'll focus in the next sections on address translation
when protected mode is enabled. Real mode exists mostly to maintain processor compatibility with
older models and to allow the operating system to bootstrap (see Appendix A for a short description
of real mode).

2.2.1. Segment Selectors and Segmentation Registers

A logical address consists of two parts: a segment identifier and an offset that specifies the relative
address within the segment. The segment identifier is a 16-bit field called the Segment Selector (see
Figure 2-2), while the offset is a 32-bit field. We'll describe the fields of Segment Selectors in the
section "Fast Access to Segment Descriptors™” later in this chapter.

Figure 2-2. Segment Selector format

15 P20

Segment Selector index |TI | gp | 1= Table Indicator
RPL = Requestor Privilage Level

To make it easy to retrieve segment selectors quickly, the processor provides segmentation registers
whose only purpose is to hold Segment Selectors; these registers are called cs, ss, ds, es, fs, and
gs. Although there are only six of them, a program can reuse the same segmentation register for
different purposes by saving its content in memory and then restoring it later.

Three of the six segmentation registers have specific purposes:

cs
The code segment register, which points to a segment containing program instructions
ss
The stack segment register, which points to a segment containing the current program stack
ds

The data segment register, which points to a segment containing global and static data

The remaining three segmentation registers are general purpose and may refer to arbitrary data
segments.

The cs register has another important function: it includes a 2-bit field that specifies the Current
Privilege Level (CPL) of the CPU. The value O denotes the highest privilege level, while the value 3
denotes the lowest one. Linux uses only levels O and 3, which are respectively called Kernel Mode

and User Mode.

2.2.2. Segment Descriptors

Each segment is represented by an 8-byte Segment Descriptor that describes the segment
characteristics. Segment Descriptors are stored either in the Global Descriptor Table (GDT) or in the
Local Descriptor Table(LDT).

Usually only one GDT is defined, while each process is permitted to have its own LDT if it needs to
create additional segments besides those stored in the GDT. The address and size of the GDT in
main memory are contained in the gdtr control register, while the address and size of the currently
used LDT are contained in the | dtr control register.

Figure 2-3 illustrates the format of a Segment Descriptor; the meaning of the various fields is
explained in Table 2-1.

Table 2-1. Segment Descriptor fields

Field Description

name

Base Contains the linear address of the first byte of the segment.

G Granularity flag: if it is cleared (equal to 0), the segment size is expressed in bytes;

otherwise, it is expressed in multiples of 4096 bytes.

Holds the offset of the last memory cell in the segment, thus binding the segment length.
Limt When Gis set to O, the size of a segment may vary between 1 byte and 1 MB; otherwise, it
may vary between 4 KB and 4 GB.

System flag: if it is cleared, the segment is a system segment that stores critical data

S structures such as the Local Descriptor Table; otherwise, it is a normal code or data
segment.
Type Characterizes the segment type and its access rights (see the text that follows this table).

Descriptor Privilege Level: used to restrict accesses to the segment. It represents the
minimal CPU privilege level requested for accessing the segment. Therefore, a segment
with its DPL set to O is accessible only when the CPL is O that is, in Kernel Mode while a
segment with its DPL set to 3 is accessible with every CPL value.

Segment-Present flag : is equal to O if the segment is not stored currently in main
P memory. Linux always sets this flag (bit 47) to 1, because it never swaps out whole
segments to disk.

Called D or B depending on whether the segment contains code or data. Its meaning is
slightly different in the two cases, but it is basically set (equal to 1) if the addresses used

bor B as segment offsets are 32 bits long, and it is cleared if they are 16 bits long (see the Intel
manual for further details).
AVL May be used by the operating system, but it is ignored by Linux.

There are several types of segments, and thus several types of Segment Descriptors. The following
list shows the types that are widely used in Linux.

Code Segment Descriptor

Indicates that the Segment Descriptor refers to a code segment; it may be included either in
the GDT or in the LDT. The descriptor has the S flag set (non-system segment).

Data Segment Descriptor

Indicates that the Segment Descriptor refers to a data segment; it may be included either in
the GDT or in the LDT. The descriptor has the S flag set. Stack segments are implemented by
means of generic data segments.

Task State Segment Descriptor (TSSD)

Indicates that the Segment Descriptor refers to a Task State Segment (TSS) that is, a segment
used to save the contents of the processor registers (see the section "Task State Segment” in
Chapter 3); it can appear only in the GDT. The corresponding Type field has the value 11 or 9,
depending on whether the corresponding process is currently executing on a CPU. The S flag of
such descriptors is set to O.

Figure 2-3. Segment Descriptor format

Data Segment Descriptor
63 62 61 60 50 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 471 40 39 38 37 36 35 M 33 32
Al Umim D |5
BASE(24-31) GIBIO|V] gy [1| P || TYee BASE {16-23)
| T E
BASE(D-15) LIMIT (0-15)

HONVBRHEHZIHIRANDHTETHIS3R2ZNWN %987 654 3 210

Code 5egment Descriptor

63 62 61 60 59 58 57 56 55 54 53 52 51 30 49 43 47 46 45 44 43 42 41 4D 3% 38 37 36 35 34 33 32

i
BASEA 3 \G\n\ﬂ|u| i
|

D |5
P H TYPE | BASE (16-23)
L 11

BASE(0-15) LIMIT (0-15)

M BRHBTAILNNHPTHETHEEEAEIRZNWN 98 7 65 432140

System Segment Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 45 47 d6 45 44 43 42 47 40 39 38 37 36 35 34 13 32
D |5
BASE(24-31) ‘G‘ "I]| | [%EM]ILJ 1| P ‘:‘ TYPE | BASE {16-23}
| i
BASE(D-13) LIMIT{0-15)

NI HBENRIDINDBETESABTITINW OIS T 6 543270

Local Descriptor Table Descriptor (LDTD)

Indicates that the Segment Descriptor refers to a segment containing an LDT; it can appear
only in the GDT. The corresponding Type field has the value 2. The S flag of such descriptors is
set to 0. The next section shows how 80 x 86 processors are able to decide whether a segment
descriptor is stored in the GDT or in the LDT of the process.

2.2.3. Fast Access to Segment Descriptors

We recall that logical addresses consist of a 16-bit Segment Selector and a 32-bit Offset, and that
segmentation registers store only the Segment Selector.

To speed up the translation of logical addresses into linear addresses, the 80 x 86 processor
provides an additional nonprogrammable registerthat is, a register that cannot be set by a
programmerfor each of the six programmable segmentation registers. Each nonprogrammable
register contains the 8-byte Segment Descriptor (described in the previous section) specified by the
Segment Selector contained in the corresponding segmentation register. Every time a Segment
Selector is loaded in a segmentation register, the corresponding Segment Descriptor is loaded from
memory into the matching nonprogrammable CPU register. From then on, translations of logical
addresses referring to that segment can be performed without accessing the GDT or LDT stored in
main memory; the processor can refer only directly to the CPU register containing the Segment
Descriptor. Accesses to the GDT or LDT are necessary only when the contents of the segmentation
registers change (see Figure 2-4).

Figure 2-4. Segment Selector and Segment Descriptor

Descriptor Table Segment
emansrasnns f .q..........,....._.
Segment H
— Descri ptor [T &

Segmentation Register Nonprogrammable Register

;I Segment Selector . | Segment Descriptor .»)

Any Segment Selector includes three fields that are described in Table 2-2.

Table 2-2. Segment Selector fields

Field Description

name

i ndex Identifies the Segment Descriptor entry contained in the GDT or in the LDT (described
further in the text following this table).

TI Table Indicator : specifies whether the Segment Descriptor is included in the GDT (Tl = 0)
or in the LDT (Tl = 1).
Requestor Privilege Level : specifies the Current Privilege Level of the CPU when the

RPL corresponding Segment Selector is loaded into the cs register; it also may be used to

selectively weaken the processor privilege level when accessing data segments (see Intel
documentation for details).

Because a Segment Descriptor is 8 bytes long, its relative address inside the GDT or the LDT is
obtained by multiplying the 13-bit index field of the Segment Selector by 8. For instance, if the GDT

is at 0x00020000 (the value stored in the gdtr register) and the index specified by the Segment
Selector is 2, the address of the corresponding Segment Descriptor is 0x00020000 + (2 X 8), or
0x00020010.

The first entry of the GDT is always set to 0. This ensures that logical addresses with a null Segment
Selector will be considered invalid, thus causing a processor exception. The maximum number of
Segment Descriptors that can be stored in the GDT is 8,191 (i.e., 213-1).

2.2.4. Segmentation Unit

Figure 2-5 shows in detail how a logical address is translated into a corresponding linear address.
The segmentation unit performs the following operations:

e Examines the TI field of the Segment Selector to determine which Descriptor Table stores the
Segment Descriptor. This field indicates that the Descriptor is either in the GDT (in which case
the segmentation unit gets the base linear address of the GDT from the gdtr register) or in the
active LDT (in which case the segmentation unit gets the base linear address of that LDT from
the | dtr register).

e Computes the address of the Segment Descriptor from the i ndex field of the Segment Selector.
The i ndex field is multiplied by 8 (the size of a Segment Descriptor), and the result is added to
the content of the gdtr or | dtr register.

¢ Adds the offset of the logical address to the Base field of the Segment Descriptor, thus
obtaining the linear address.

Figure 2-5. Translating a logical address

gdtor ldt Lineqr Adidress

B

gdtr or dtr

¢
o

[Selector ﬂf{*;ft
nd

[[2| |

Logical Address

H
=
H
H
H
H
H
H
H

Notice that, thanks to the nonprogrammable registers associated with the segmentation registers,
the first two operations need to be performed only when a segmentation register has been changed.

e rrey NEXT

=1

2.3. Segmentation in Linux

Segmentation has been included in 80 x 86 microprocessors to encourage programmers to split their
applications into logically related entities, such as subroutines or global and local data areas.
However, Linux uses segmentation in a very limited way. In fact, segmentation and paging are
somewhat redundant, because both can be used to separate the physical address spaces of
processes: segmentation can assign a different linear address space to each process, while paging
can map the same linear address space into different physical address spaces. Linux prefers paging
to segmentation for the following reasons:

¢ Memory management is simpler when all processes use the same segment register values that
is, when they share the same set of linear addresses.

e One of the design objectives of Linux is portability to a wide range of architectures; RISC
architectures in particular have limited support for segmentation.

The 2.6 version of Linux uses segmentation only when required by the 80 x 86 architecture.

All Linux processes running in User Mode use the same pair of segments to address instructions and
data. These segments are called user code segment and user data segment , respectively. Similarly,
all Linux processes running in Kernel Mode use the same pair of segments to address instructions
and data: they are called kernel code segment and kernel data segment , respectively. Table 2-3
shows the values of the Segment Descriptor fields for these four crucial segments.

Table 2-3. Values of the Segment Descriptor fields for the four main Linux

segments
Segment Base G Limit S Type DPL D/B P
user code 0x00000000 1 Oxfffff 1 10 3 1 1
user data 0x00000000 1 Oxfffff 1 2 3 1 1
kernel code 0x00000000 1 Oxfffff 1 10 0 1 1
kernel data 0x00000000 1 Oxfffff 1 2 0 1 1

The corresponding Segment Selectors are defined by the macros _ _USER CS, _ _USER DS, _
_KERNEL_Cs, and _ _KERNEL_DS, respectively. To address the kernel code segment, for instance, the
kernel just loads the value yielded by the _ _KERNEL_CS macro into the cs segmentation register.

Notice that the linear addresses associated with such segments all start at O and reach the
addressing limit of 232 -1. This means that all processes, either in User Mode or in Kernel Mode, may
use the same logical addresses.

Another important consequence of having all segments start at 0x00000000 is that in Linux, logical
addresses coincide with linear addresses; that is, the value of the Offset field of a logical address
always coincides with the value of the corresponding linear address.

As stated earlier, the Current Privilege Level of the CPU indicates whether the processor is in User or
Kernel Mode and is specified by the RPL field of the Segment Selector stored in the cs register.
Whenever the CPL is changed, some segmentation registers must be correspondingly updated. For

instance, when the CPL is equal to 3 (User Mode), the ds register must contain the Segment Selector
of the user data segment, but when the CPL is equal to O, the ds register must contain the Segment
Selector of the kernel data segment.

A similar situation occurs for the ss register. It must refer to a User Mode stack inside the user data
segment when the CPL is 3, and it must refer to a Kernel Mode stack inside the kernel data segment
when the CPL is 0. When switching from User Mode to Kernel Mode, Linux always makes sure that
the ss register contains the Segment Selector of the kernel data segment.

When saving a pointer to an instruction or to a data structure, the kernel does not need to store the
Segment Selector component of the logical address, because the ss register contains the current
Segment Selector. As an example, when the kernel invokes a function, it executes a cal | assembly
language instruction specifying just the Offset component of its logical address; the Segment
Selector is implicitly selected as the one referred to by the cs register. Because there is just one
segment of type "executable in Kernel Mode," namely the code segment identified by _ KERNEL_CS, it
is sufficient to load __KERNEL_CS into ¢s whenever the CPU switches to Kernel Mode. The same
argument goes for pointers to kernel data structures (implicitly using the ds register), as well as for
pointers to user data structures (the kernel explicitly uses the es register).

Besides the four segments just described, Linux makes use of a few other specialized segments.
We'll introduce them in the next section while describing the Linux GDT.

2.3.1. The Linux GDT

In uniprocessor systems there is only one GDT, while in multiprocessor systems there is one GDT for
every CPU in the system. All GDTs are stored in the cpu_gdt _t abl e array, while the addresses and
sizes of the GDTs (used when initializing the gdtr registers) are stored in the cpu_gdt _descr array. If
you look in the Source Code Index, you can see that these symbols are defined in the file
arch/i386/kernel/head.S . Every macro, function, and other symbol in this book is listed in the
Source Code Index, so you can quickly find it in the source code.

The layout of the GDTs is shown schematically in Figure 2-6. Each GDT includes 18 segment
descriptors and 14 null, unused, or reserved entries. Unused entries are inserted on purpose so that
Segment Descriptors usually accessed together are kept in the same 32-byte line of the hardware
cache (see the section "Hardware Cache" later in this chapter).

The 18 segment descriptors included in each GDT point to the following segments:

e Four user and kernel code and data segments (see previous section).

e A Task State Segment (TSS), different for each processor in the system. The linear address
space corresponding to a TSS is a small subset of the linear address space corresponding to the
kernel data segment. The Task State Segments are sequentially stored in the init_tss array;
in particular, the Base field of the TSS descriptor for the nth CPU points to the nth component of
the i nit _tss array. The G (granularity) flag is cleared, while the Li nm t field is set to Oxeb,
because the TSS segment is 236 bytes long. The Type field is set to 9 or 11 (available 32-bit
TSS), and the DPL is set to O, because processes in User Mode are not allowed to access TSS
segments. You will find details on how Linux uses TSSs in the section "Task State Segment” in

Chapter 3.

Figure 2-6. The Global Descriptor Table

Linux's GDT Segment Selectors Linux’s GDT Segment Selectors

null 0x0 55 0xB0
reservid LDT 0x88
reserved PNPEIOS 3 2-bit code Oxa0
reserved PNPBIOS 16-bit code 098
nat used PNPBIOS 16-bit data Oxal
ot used PNPBIOS 16-bit data 0xa8
1541 0x33 PNPBIOS 16-bit data Oxbo
TLS#2 0x3b APMBIOS 32-bitcode ~ Oxb8
TL5#3 0x43 APMBIOS 16-bit code = OxcO
reservid APMBIOS data Oxc8
reservid not used
reserved not used
kerned code Ox60 (_ KERNEL_CS) not used
kernel data 0x68 (_ KERNEL_DS) not used
user code 0x73 (__USER_CS) not used
user data ox7b (__USER_DS) double faulr TS5 Oxf8

A segment including the default Local Descriptor Table (LDT), usually shared by all processes
(see the next section).

e Three Thread-Local Storage (TLS) segments: this is a mechanism that allows multithreaded
applications to make use of up to three segments containing data local to each thread. The
set _thread area() and get_thread_area() system calls, respectively, create and release a
TLS segment for the executing process.

e Three segments related to Advanced Power Management (APM): the BIOS code makes use of
segments, so when the Linux APM driver invokes BIOS functions to get or set the status of APM
devices, it may use custom code and data segments.

¢ Five segments related to Plug and Play (PnP) BIOS services. As in the previous case, the BIOS
code makes use of segments, so when the Linux PnP driver invokes BIOS functions to detect
the resources used by PnP devices, it may use custom code and data segments.

e A special TSS segment used by the kernel to handle "Double fault " exceptions (see
"Exceptions" in Chapter 4).

As stated earlier, there is a copy of the GDT for each processor in the system. All copies of the GDT
store identical entries, except for a few cases. First, each processor has its own TSS segment, thus
the corresponding GDT's entries differ. Moreover, a few entries in the GDT may depend on the
process that the CPU is executing (LDT and TLS Segment Descriptors). Finally, in some cases a
processor may temporarily modify an entry in its copy of the GDT; this happens, for instance, when
invoking an APM's BIOS procedure.

2.3.2. The Linux LDTs

Most Linux User Mode applications do not make use of a Local Descriptor Table, thus the kernel
defines a default LDT to be shared by most processes. The default Local Descriptor Table is stored in
the def aul t _I dt array. It includes five entries, but only two of them are effectively used by the
kernel: a call gate for iBCS executables, and a call gate for Solaris /x86 executables (see the section
"Execution Domains" in Chapter 20). Call gates are a mechanism provided by 80 x 86
microprocessors to change the privilege level of the CPU while invoking a predefined function; as we

won't discuss them further, you should consult the Intel documentation for more details.

In some cases, however, processes may require to set up their own LDT. This turns out to be useful
to applications (such as Wine) that execute segment-oriented Microsoft Windows applications. The
nodi fy I dt() system call allows a process to do this.

Any custom LDT created by nodify_Idt() also requires its own segment. When a processor starts
executing a process having a custom LDT, the LDT entry in the CPU-specific copy of the GDT is
changed accordingly.

User Mode applications also may allocate new segments by means of nodi fy_I dt () ; the kernel,

however, never makes use of these segments, and it does not have to keep track of the
corresponding Segment Descriptors, because they are included in the custom LDT of the process.

=3 NEXT

=1

2.4. Paging in Hardware

The paging unit translates linear addresses into physical ones. One key task in the unit is to check
the requested access type against the access rights of the linear address. If the memory access is
not valid, it generates a Page Fault exception (see Chapter 4 and Chapter 8).

For the sake of efficiency, linear addresses are grouped in fixed-length intervals called pages ;
contiguous linear addresses within a page are mapped into contiguous physical addresses. In this
way, the kernel can specify the physical address and the access rights of a page instead of those of
all the linear addresses included in it. Following the usual convention, we shall use the term "page"
to refer both to a set of linear addresses and to the data contained in this group of addresses.

The paging unit thinks of all RAM as partitioned into fixed-length page frames (sometimes referred
to as physical pages). Each page frame contains a page that is, the length of a page frame coincides
with that of a page. A page frame is a constituent of main memory, and hence it is a storage area. It

is important to distinguish a page from a page frame; the former is just a block of data, which may
be stored in any page frame or on disk.

The data structures that map linear to physical addresses are called page tables ; they are stored in
main memory and must be properly initialized by the kernel before enabling the paging unit.

Starting with the 80386, all 80 x 86 processors support paging; it is enabled by setting the PG flag of
a control register named cr0 . When PG = 0, linear addresses are interpreted as physical addresses.

2.4.1. Regular Paging

Starting with the 80386, the paging unit of Intel processors handles 4 KB pages.

The 32 bits of a linear address are divided into three fields:

Directory

The most significant 10 bits

Table

The intermediate 10 bits

Offset
The least significant 12 bits

The translation of linear addresses is accomplished in two steps, each based on a type of translation
table. The first translation table is called the Page Directory, and the second is called the Page
Table.[X1

[TInthe discussion that follows, the lowercase "page table" term denotes any page storing the mapping between linear and physical
addresses, while the capitalized "Page Table"term denotes a page inthe lastlevel of page tables.

The aim of this two-level scheme is to reduce the amount of RAM required for per-process Page
Tables. If a simple one-level Page Table was used, then it would require up to 220 entries (i.e., at 4

bytes per entry, 4 MB of RAM) to represent the Page Table for each process (if the process used a
full 4 GB linear address space), even though a process does not use all addresses in that range. The
two-level scheme reduces the memory by requiring Page Tables only for those virtual memory
regions actually used by a process.

Each active process must have a Page Directory assigned to it. However, there is no need to allocate
RAM for all Page Tables of a process at once; it is more efficient to allocate RAM for a Page Table
only when the process effectively needs it.

The physical address of the Page Directory in use is stored in a control register named cr3 . The
Directory field within the linear address determines the entry in the Page Directory that points to the
proper Page Table. The address's Table field, in turn, determines the entry in the Page Table that
contains the physical address of the page frame containing the page. The Offset field determines the
relative position within the page frame (see Figure 2-7). Because it is 12 bits long, each page
consists of 4096 bytes of data.

Figure 2-7. Paging by 80 x 86 processors

Linear Address
3 2N 121 0
DIRECTORY TABLE OFFSET

Page Toble

L 4

Page Directory u

k4

O

s

Both the Directory and the Table fields are 10 bits long, so Page Directories and Page Tables can
include up to 1,024 entries. It follows that a Page Directory can address up to 1024 x 1024 x
4096=232 memory cells, as you'd expect in 32-bit addresses.

The entries of Page Directories and Page Tables have the same structure. Each entry includes the
following fields:

Present flag

If it is set, the referred-to page (or Page Table) is contained in main memory; if the flag is O,
the page is not contained in main memory and the remaining entry bits may be used by the
operating system for its own purposes. If the entry of a Page Table or Page Directory needed
to perform an address translation has the Present flag cleared, the paging unit stores the

linear address in a control register named cr 2 and generates exception 14: the Page Fault
exception. (We will see in Chapter 17 how Linux uses this field.)

Field containing the 20 most significant bits of a page frame physical address
Because each page frame has a 4-KB capacity, its physical address must be a multiple of
4096, so the 12 least significant bits of the physical address are always equal to 0. If the field
refers to a Page Directory, the page frame contains a Page Table; if it refers to a Page Table,
the page frame contains a page of data.

Accessed flag
Set each time the paging unit addresses the corresponding page frame. This flag may be used

by the operating system when selecting pages to be swapped out. The paging unit never
resets this flag; this must be done by the operating system.

Dirty flag

Applies only to the Page Table entries. It is set each time a write operation is performed on the

page frame. As with the Accessed flag, Dirty may be used by the operating system when
selecting pages to be swapped out. The paging unit never resets this flag; this must be done
by the operating system.

Read/ Wit e flag

Contains the access right (Read/Write or Read) of the page or of the Page Table (see the
section "Hardware Protection Scheme" later in this chapter).

User/ Supervi sor flag

Contains the privilege level required to access the page or Page Table (see the later section
"Hardware Protection Scheme").

PCD and PWI flags

Controls the way the page or Page Table is handled by the hardware cache (see the section
"Hardware Cache" later in this chapter).

Page Size flag

Applies only to Page Directory entries. If it is set, the entry refers to a 2 MB- or 4 MB-long
page frame (see the following sections).

G obal flag

Applies only to Page Table entries. This flag was introduced in the Pentium Pro to prevent
frequently used pages from being flushed from the TLB cache (see the section "Translation
Lookaside Buffers (TLB)" later in this chapter). It works only if the Page Global Enable (PGE)
flag of register cr4 is set.

2.4.2. Extended Paging

Starting with the Pentium model, 80 x 86 microprocessors introduce extended paging , which allows
page frames to be 4 MB instead of 4 KB in size (see Figure 2-8). Extended paging is used to
translate large contiguous linear address ranges into corresponding physical ones; in these cases,
the kernel can do without intermediate Page Tables and thus save memory and preserve TLB entries
(see the section "Translation Lookaside Buffers (TLB)").

Figure 2-8. Extended paging

Linear Address
i 2 N]

| DIRECTORY | OFFSET I

4 ME Page

Page Directary

o_, "

ol

As mentioned in the previous section, extended paging is enabled by setting the Page Si ze flag of a
Page Directory entry. In this case, the paging unit divides the 32 bits of a linear address into two
fields:

Directory

The most significant 10 bits

Offset
The remaining 22 bits

Page Directory entries for extended paging are the same as for normal paging, except that:

e The Page Size flag must be set.

¢ Only the 10 most significant bits of the 20-bit physical address field are significant. This is
because each physical address is aligned on a 4-MB boundary, so the 22 least significant bits of
the address are O.

Extended paging coexists with regular paging; it is enabled by setting the PSE flag of the cr4
processor register.

2.4.3. Hardware Protection Scheme

The paging unit uses a different protection scheme from the segmentation unit. While 80 x 86
processors allow four possible privilege levels to a segment, only two privilege levels are associated
with pages and Page Tables, because privileges are controlled by the User/ Super vi sor flag
mentioned in the earlier section "Regular Paging.” When this flag is 0, the page can be addressed
only when the CPL is less than 3 (this means, for Linux, when the processor is in Kernel Mode).
When the flag is 1, the page can always be addressed.

Furthermore, instead of the three types of access rights (Read, Write, and Execute) associated with
segments, only two types of access rights (Read and Write) are associated with pages. If the

Read/ Wit e flag of a Page Directory or Page Table entry is equal to 0, the corresponding Page Table
or page can only be read; otherwise it can be read and written.*1

[l Recent Intel Pentium 4 processors sport an NX (No eXecute) flag in each 64-bit Page Table entry (PAE must be enabled, see the
section"The Physical Address Extension (PAE) Paging Mechanism" later in this chapter). Linux 2.6.11 supports this hardware feature.

2.4.4. An Example of Regular Paging

A simple example will help in clarifying how regular paging works. Let's assume that the kernel
assigns the linear address space between 0x20000000 and 0x2003ffff to a running process.l 1 This
space consists of exactly 64 pages. We don't care about the physical addresses of the page frames
containing the pages; in fact, some of them might not even be in main memory. We are interested
only in the remaining fields of the Page Table entries.

[1Aswe shall see in the following chapters, the 3 GB linear address space is an upper limit, but a User Mode process is allowed to
reference only a subset of it.

Let's start with the 10 most significant bits of the linear addresses assigned to the process, which
are interpreted as the Directory field by the paging unit. The addresses start with a 2 followed by
zeros, so the 10 bits all have the same value, namely 0x080 or 128 decimal. Thus the Directory field
in all the addresses refers to the 129th entry of the process Page Directory. The corresponding entry
must contain the physical address of the Page Table assigned to the process (see Figure 2-9). If no
other linear addresses are assigned to the process, all the remaining 1,023 entries of the Page
Directory are filled with zeros.

Figure 2-9. An example of paging

Page Directory Page Tabie
1023 (u3ff) ¢ 1023 {0x3ff)
64 (0040
B3 (0n03F)
128 (0x080)
0

The values assumed by the intermediate 10 bits, (that is, the values of the Table field) range from O
to 0x03f, or from O to 63 decimal. Thus, only the first 64 entries of the Page Table are valid. The
remaining 960 entries are filled with zeros.

Suppose that the process needs to read the byte at linear address 0x20021406. This address is
handled by the paging unit as follows:

1. The Directory field 0x80 is used to select entry 0x80 of the Page Directory, which points to the
Page Table associated with the process's pages.

2. The Table field 0x21 is used to select entry 0x21 of the Page Table, which points to the page
frame containing the desired page.

3. Finally, the Offset field 0x406 is used to select the byte at offset 0x406 in the desired page
frame.

If the Present flag of the 0x21 entry of the Page Table is cleared, the page is not present in main
memory; in this case, the paging unit issues a Page Fault exception while translating the linear
address. The same exception is issued whenever the process attempts to access linear addresses
outside of the interval delimited by 0x20000000 and 0x2003f f f f, because the Page Table entries not
assigned to the process are filled with zeros; in particular, their Present flags are all cleared.

2.4.5. The Physical Address Extension (PAE) Paging Mechanism

The amount of RAM supported by a processor is limited by the number of address pins connected to
the address bus. Older Intel processors from the 80386 to the Pentium used 32-bit physical
addresses. In theory, up to 4 GB of RAM could be installed on such systems; in practice, due to the
linear address space requirements of User Mode processes, the kernel cannot directly address more
than 1 GB of RAM, as we will see in the later section "Paging in Linux."

However, big servers that need to run hundreds or thousands of processes at the same time require
more than 4 GB of RAM, and in recent years this created a pressure on Intel to expand the amount
of RAM supported on the 32-bit 80 x 86 architecture.

Intel has satisfied these requests by increasing the number of address pins on its processors from 32
to 36. Starting with the Pentium Pro, all Intel processors are now able to address up to 236 = 64 GB
of RAM. However, the increased range of physical addresses can be exploited only by introducing a
new paging mechanism that translates 32-bit linear addresses into 36-bit physical ones.

With the Pentium Pro processor, Intel introduced a mechanism called Physical Address Extension
(PAE). Another mechanism, Page Size Extension (PSE-36), was introduced in the Pentium 111
processor, but Linux does not use it, and we won't discuss it further in this book.

PAE is activated by setting the Physical Address Extension (PAE) flag in the cr4 control register. The
Page Size (PS) flag in the page directory entry enables large page sizes (2 MB when PAE is enabled).

Intel has changed the paging mechanism in order to support PAE.

e The 64 GB of RAM are split into 224 distinct page frames, and the physical address field of Page
Table entries has been expanded from 20 to 24 bits. Because a PAE Page Table entry must
include the 12 flag bits (described in the earlier section "Regular Paging™) and the 24 physical
address bits, for a grand total of 36, the Page Table entry size has been doubled from 32 bits
to 64 bits. As a result, a 4-KB PAE Page Table includes 512 entries instead of 1,024.

e A new level of Page Table called the Page Directory Pointer Table (PDPT) consisting of four 64-
bit entries has been introduced.

e The cr 3 control register contains a 27-bit Page Directory Pointer Table base address field.
Because PDPTs are stored in the first 4 GB of RAM and aligned to a multiple of 32 bytes (25),
27 bits are sufficient to represent the base address of such tables.

¢ When mapping linear addresses to 4 KB pages (PS flag cleared in Page Directory entry), the 32
bits of a linear address are interpreted in the following way:

cr3

Points to a PDPT
bits 3130

Point to 1 of 4 possible entries in PDPT
bits 2921

Point to 1 of 512 possible entries in Page Directory
bits 2012

Point to 1 of 512 possible entries in Page Table
bits 11-0

Offset of 4-KB page

¢ When mapping linear addresses to 2-MB pages (PS flag set in Page Directory entry), the 32 bits
of a linear address are interpreted in the following way:

cr3

Points to a PDPT

bits 31-30

Point to 1 of 4 possible entries in PDPT

bits 2921

Point to 1 of 512 possible entries in Page Directory

bits 20-0
Offset of 2-MB page

To summarize, once cr 3 is set, it is possible to address up to 4 GB of RAM. If we want to address
more RAM, we'll have to put a new value in cr 3 or change the content of the PDPT. However, the
main problem with PAE is that linear addresses are still 32 bits long. This forces kernel programmers
to reuse the same linear addresses to map different areas of RAM. We'll sketch how Linux initializes
Page Tables when PAE is enabled in the later section, "Final kernel Page Table when RAM size is
more than 4096 MB." Clearly, PAE does not enlarge the linear address space of a process, because it
deals only with physical addresses. Furthermore, only the kernel can modify the page tables of the
processes, thus a process running in User Mode cannot use a physical address space larger than 4
GB. On the other hand, PAE allows the kernel to exploit up to 64 GB of RAM, and thus to increase
significantly the number of processes in the system.

2.4.6. Paging for 64-bit Architectures

As we have seen in the previous sections, two-level paging is commonly used by 32-bit
microprocessorslZl. Two-level paging, however, is not suitable for computers that adopt a 64-bit
architecture. Let's use a thought experiment to explain why:

['1 The third level of paging present in 80 x 86 processors with PAE enabled has been introduced only to lower from 1024 to 512 the
number of entries in the Page Directory and Page Tables. This enlarges the Page Table entries from 32 bits to 64 bits so that they can
store the 24 most significant bits of the physical address.

Start by assuming a standard page size of 4 KB. Because 1 KB covers a range of 210 addresses, 4 KB
covers 212 addresses, so the Offset field is 12 bits. This leaves up to 52 bits of the linear address to
be distributed between the Table and the Directory fields. If we now decide to use only 48 of the 64
bits for addressing (this restriction leaves us with a comfortable 256 TB address space!), the
remaining 48- 12 = 36 bits will have to be split among Table and the Directory fields. If we now
decide to reserve 18 bits for each of these two fields, both the Page Directory and the Page Tables of
each process should include 218 entries that is, more than 256,000 entries.

For that reason, all hardware paging systems for 64-bit processors make use of additional paging
levels. The number of levels used depends on the type of processor. Table 2-4 summarizes the main
characteristics of the hardware paging systems used by some 64-bit platforms supported by Linux.
Please refer to the section "Hardware Dependency" in Chapter 1 for a short description of the
hardware associated with the platform name.

Table 2-4. Paging levels in some 64-bit architectures

Platform Page Number of address bits Number of paging Linear address
name size used levels splitting

alpha 8 KB 2 43 3 10 + 10 + 10 + 13
ia64 4 KB @ 39 3 9+9+9+ 12
ppc64 4 KB 41 3 10+ 10 + 9 + 12
sh64 4 KB 41 3 10+ 10 +9 + 12
x86_64 4 KB 48 4 9+9+9+9+ 12

& This architecture supports different page sizes; we select a typical page size adopted by Linux.

As we will see in the section "Paging in Linux" later in this chapter, Linux succeeds in providing a
common paging model that fits most of the supported hardware paging systems.

2.4.7. Hardware Cache

Today's microprocessors have clock rates of several gigahertz, while dynamic RAM (DRAM) chips
have access times in the range of hundreds of clock cycles. This means that the CPU may be held
back considerably while executing instructions that require fetching operands from RAM and/or
storing results into RAM.

Hardware cache memories were introduced to reduce the speed mismatch between CPU and RAM.
They are based on the well-known locality principle , which holds both for programs and data
structures. This states that because of the cyclic structure of programs and the packing of related
data into linear arrays, addresses close to the ones most recently used have a high probability of

being used in the near future. It therefore makes sense to introduce a smaller and faster memory
that contains the most recently used code and data. For this purpose, a new unit called the line was
introduced into the 80 x 86 architecture. It consists of a few dozen contiguous bytes that are
transferred in burst mode between the slow DRAM and the fast on-chip static RAM (SRAM) used to
implement caches.

The cache is subdivided into subsets of lines . At one extreme, the cache can be direct mapped , in
which case a line in main memory is always stored at the exact same location in the cache. At the
other extreme, the cache is fully associative , meaning that any line in memory can be stored at any
location in the cache. But most caches are to some degree N-way set associative , where any line of
main memory can be stored in any one of N lines of the cache. For instance, a line of memory can be
stored in two different lines of a two-way set associative cache.

As shown in Figure 2-10, the cache unit is inserted between the paging unit and the main memory.
It includes both a hardware cache memory and a cache controller. The cache memory stores the
actual lines of memory. The cache controller stores an array of entries, one entry for each line of the
cache memory. Each entry includes a tag and a few flags that describe the status of the cache line.
The tag consists of some bits that allow the cache controller to recognize the memory location
currently mapped by the line. The bits of the memory's physical address are usually split into three
groups: the most significant ones correspond to the tag, the middle ones to the cache controller
subset index, and the least significant ones to the offset within the line.

Figure 2-10. Processor hardware cache

CPU
SRAM Paging
cache unit
-1 DRAM
| Main memory
Cache controller

When accessing a RAM memory cell, the CPU extracts the subset index from the physical address
and compares the tags of all lines in the subset with the high-order bits of the physical address. If a
line with the same tag as the high-order bits of the address is found, the CPU has a cache hit;
otherwise, it has a cache miss.

When a cache hit occurs, the cache controller behaves differently, depending on the access type. For
a read operation, the controller selects the data from the cache line and transfers it into a CPU
register; the RAM is not accessed and the CPU saves time, which is why the cache system was
invented. For a write operation, the controller may implement one of two basic strategies called
write-through and write-back . In a write-through, the controller always writes into both RAM and
the cache line, effectively switching off the cache for write operations. In a write-back, which offers
more immediate efficiency, only the cache line is updated and the contents of the RAM are left
unchanged. After a write-back, of course, the RAM must eventually be updated. The cache controller
writes the cache line back into RAM only when the CPU executes an instruction requiring a flush of
cache entries or when a FLUSH hardware signal occurs (usually after a cache miss).

When a cache miss occurs, the cache line is written to memory, if necessary, and the correct line is
fetched from RAM into the cache entry.

Multiprocessor systems have a separate hardware cache for every processor, and therefore they

need additional hardware circuitry to synchronize the cache contents. As shown in Figure 2-11, each
CPU has its own local hardware cache. But now updating becomes more time consuming: whenever
a CPU modifies its hardware cache, it must check whether the same data is contained in the other
hardware cache; if so, it must notify the other CPU to update it with the proper value. This activity is
often called cache snooping . Luckily, all this is done at the hardware level and is of no concern to
the kernel.

Figure 2-11. The caches in a dual processor

(PUo (PuT

Hardware

Lache

LETPITY

RAM

Cache technology is rapidly evolving. For example, the first Pentium models included a single on-
chip cache called the L1-cache. More recent models also include other larger, slower on-chip caches
called the L2-cache, L3-cache, etc. The consistency between the cache levels is implemented at the
hardware level. Linux ignores these hardware details and assumes there is a single cache.

The CD flag of the cr 0 processor register is used to enable or disable the cache circuitry. The Nwflag,
in the same register, specifies whether the write-through or the write-back strategy is used for the
caches.

Another interesting feature of the Pentium cache is that it lets an operating system associate a
different cache management policy with each page frame. For this purpose, each Page Directory and
each Page Table entry includes two flags: PCD (Page Cache Disable), which specifies whether the
cache must be enabled or disabled while accessing data included in the page frame; and PWI (Page
Write-Through), which specifies whether the write-back or the write-through strategy must be
applied while writing data into the page frame. Linux clears the PCD and PWI flags of all Page
Directory and Page Table entries; as a result, caching is enabled for all page frames, and the write-
back strategy is always adopted for writing.

2.4.8. Translation Lookaside Buffers (TLB)

Besides general-purpose hardware caches, 80 x 86 processors include another cache called
Translation Lookaside Buffers (TLB) to speed up linear address translation. When a linear address is
used for the first time, the corresponding physical address is computed through slow accesses to the
Page Tables in RAM. The physical address is then stored in a TLB entry so that further references to
the same linear address can be quickly translated.

In a multiprocessor system, each CPU has its own TLB, called the local TLB of the CPU. Contrary to

the hardware cache, the corresponding entries of the TLB need not be synchronized, because
processes running on the existing CPUs may associate the same linear address with different
physical ones.

When the cr 3 control register of a CPU is modified, the hardware automatically invalidates all entries
of the local TLB, because a new set of page tables is in use and the TLBs are pointing to old data.

=1

=1

2.5. Paging in Linux

Linux adopts a common paging model that fits both 32-bit and 64-bit architectures. As explained in
the earlier section "Paging for 64-bit Architectures,” two paging levels are sufficient for 32-bit
architectures, while 64-bit architectures require a higher number of paging levels. Up to version
2.6.10, the Linux paging model consisted of three paging levels. Starting with version 2.6.11, a
four-level paging model has been adopted.[*1 The four types of page tables illustrated in Figure 2-12
are called:

['1 This change has been made to fully support the linear address bit splitting used by the x86_64 platform (see Table 2-4).

Page Global Directory

Page Upper Directory

Page Middle Directory

Page Table

The Page Global Directory includes the addresses of several Page Upper Directories, which in turn
include the addresses of several Page Middle Directories, which in turn include the addresses of
several Page Tables. Each Page Table entry points to a page frame. Thus the linear address can be
split into up to five parts. Figure 2-12 does not show the bit numbers, because the size of each part
depends on the computer architecture.

For 32-bit architectures with no Physical Address Extension, two paging levels are sufficient. Linux
essentially eliminates the Page Upper Directory and the Page Middle Directory fields by saying that
they contain zero bits. However, the positions of the Page Upper Directory and the Page Middle
Directory in the sequence of pointers are kept so that the same code can work on 32-bit and 64-bit
architectures. The kernel keeps a position for the Page Upper Directory and the Page Middle
Directory by setting the number of entries in them to 1 and mapping these two entries into the
proper entry of the Page Global Directory.

Figure 2-12. The Linux paging model

Linear Address
MIDDLEDIR

GLOBAL DIR UPPER DIR

Page Middle
irectory

Foge Upper
Uiretory

Peage Global
Directary b4

3

For 32-bit architectures with the Physical Address Extension enabled, three paging levels are used.
The Linux's Page Global Directory corresponds to the 80 x 86's Page Directory Pointer Table, the
Page Upper Directory is eliminated, the Page Middle Directory corresponds to the 80 x 86's Page
Directory, and the Linux's Page Table corresponds to the 80 x 86's Page Table.

Finally, for 64-bit architectures three or four levels of paging are used depending on the linear
address bit splitting performed by the hardware (see Table 2-2).

Linux's handling of processes relies heavily on paging. In fact, the automatic translation of linear
addresses into physical ones makes the following design objectives feasible:

e Assign a different physical address space to each process, ensuring an efficient protection
against addressing errors.

e Distinguish pages (groups of data) from page frames (physical addresses in main memory).
This allows the same page to be stored in a page frame, then saved to disk and later reloaded
in a different page frame. This is the basic ingredient of the virtual memory mechanism (see

Chapter 17).

In the remaining part of this chapter, we will refer for the sake of concreteness to the paging
circuitry used by the 80 x 86 processors.

As we will see in Chapter 9, each process has its own Page Global Directory and its own set of Page
Tables. When a process switch occurs (see the section "Process Switch" in Chapter 3), Linux saves
the cr 3 control register in the descriptor of the process previously in execution and then loads cr 3
with the value stored in the descriptor of the process to be executed next. Thus, when the new
process resumes its execution on the CPU, the paging unit refers to the correct set of Page Tables.

Mapping linear to physical addresses now becomes a mechanical task, although it is still somewhat
complex. The next few sections of this chapter are a rather tedious list of functions and macros that
retrieve information the kernel needs to find addresses and manage the tables; most of the functions
are one or two lines long. You may want to only skim these sections now, but it is useful to know the
role of these functions and macros, because you'll see them often in discussions throughout this
book.

2.5.1. The Linear Address Fields

The following macros simplify Page Table handling:

PAGE_SHI FT

Specifies the length in bits of the Offset field; when applied to 80 x 86 processors, it yields the
value 12. Because all the addresses in a page must fit in the Offset field, the size of a page on
80 x 86 systems is 212 or the familiar 4,096 bytes; the PAGE_SHI FT of 12 can thus be
considered the logarithm base 2 of the total page size. This macro is used by PAGE_SI ZE to
return the size of the page. Finally, the PAGE_VASK macro yields the value 0xf f fff 000 and is
used to mask all the bits of the Offset field.

PVMD_SHI FT

The total length in bits of the Offset and Table fields of a linear address; in other words, the
logarithm of the size of the area a Page Middle Directory entry can map. The PVMD_SI ZE macro
computes the size of the area mapped by a single entry of the Page Middle Directory that is, of
a Page Table. The PMD_MASK macro is used to mask all the bits of the Offset and Table fields.

When PAE is disabled, PMD_SHI FT yields the value 22 (12 from Offset plus 10 from Table),
PMD_SI ZE yields 222 or 4 MB, and PMD_MASK yields 0xf f c00000. Conversely, when PAE is
enabled, PMD_SHI FT yields the value 21 (12 from Offset plus 9 from Table), PMD_SI ZE yields 221
or 2 MB, and PMD_MASK yields 0xf f e00000.

Large pages do not make use of the last level of page tables, thus LARGE_PAGE_SI ZE, which
yields the size of a large page, is equal to PVMD_SI ZE (2PVMD_SHI FT) while LARGE_PAGE_MASK,
which is used to mask all the bits of the Offset and Table fields in a large page address, is
equal to PMD_NMASK.

PUD_SHI FT

Determines the logarithm of the size of the area a Page Upper Directory entry can map. The
PUD_SI ZE macro computes the size of the area mapped by a single entry of the Page Global
Directory. The PUD_MASK macro is used to mask all the bits of the Offset, Table, Middle Air, and
Upper Air fields.

On the 80 x 86 processors, PUD_SHI FT is always equal to PMD_SHI FT and PUD_SI ZE is equal to 4
MB or 2 MB.

PCDI R_SHI FT

Determines the logarithm of the size of the area that a Page Global Directory entry can map.
The PGDI R_SI ZE macro computes the size of the area mapped by a single entry of the Page
Global Directory. The PGDI R_MASK macro is used to mask all the bits of the Offset, Table, Middle
Air, and Upper Air fields.

When PAE is disabled, PGDI R_SHI FT yields the value 22 (the same value yielded by PVMD _SHI FT
and by PUD_SHI FT), PGDI R_SI ZE yields 222 or 4 MB, and PGDI R_MASK yields 0xf f c00000.
Conversely, when PAE is enabled, PGDI R_SHI FT yields the value 30 (12 from Offset plus 9 from
Table plus 9 from Middle Air), PGDI R_SI ZE yields 230 or 1 GB, and PGDI R_MASK yields
0xc0000000.

PTRS_PER_PTE, PTRS_PER_PMD, PTRS_PER PUD, and PTRS_PER_PGD

Compute the number of entries in the Page Table, Page Middle Directory, Page Upper
Directory, and Page Global Directory. They yield the values 1,024, 1, 1, and 1,024,
respectively, when PAE is disabled; and the values 512, 512, 1, and 4, respectively, when PAE

is enabled.

2.5.2. Page Table Handling

pte_t, pnd_t, pud_t, and pgd_t describe the format of, respectively, a Page Table, a Page Middle
Directory, a Page Upper Directory, and a Page Global Directory entry. They are 64-bit data types
when PAE is enabled and 32-bit data types otherwise. pgprot _t is another 64-bit (PAE enabled) or
32-bit (PAE disabled) data type that represents the protection flags associated with a single entry.

Five type-conversion macros _ _ pte, _ _ pnd, _ _ pud, _ _ pgd, and _ _ pgprot cast an unsigned
integer into the required type. Five other type-conversion macros pte_val, pnd_val, pud_val,
pgd_val, and pgprot _val perform the reverse casting from one of the four previously mentioned
specialized types into an unsigned integer.

The kernel also provides several macros and functions to read or modify page table entries:

e pte_none, pnd_none, pud_none, and pgd_none yield the value 1 if the corresponding entry has the
value O; otherwise, they yield the value O.

e pte_clear, pnd_cl ear, pud_cl ear, and pgd_cl ear clear an entry of the corresponding page
table, thus forbidding a process to use the linear addresses mapped by the page table entry.
The ptep_get _and_clear() function clears a Page Table entry and returns the previous value.

e set pte, set_pnd, set_pud, and set _pgd write a given value into a page table entry;
set _pte_atonic is identical to set _pte, but when PAE is enabled it also ensures that the 64-bit
value is written atomically.

e pte_sane(a, b) returns 1 if two Page Table entries a and b refer to the same page and specify
the same access privileges, O otherwise.

e pnd_I arge(e) returns 1 if the Page Middle Directory entry e refers to a large page (2 MB or 4
MB), O otherwise.

The pnd_bad macro is used by functions to check Page Middle Directory entries passed as input
parameters. It yields the value 1 if the entry points to a bad Page Table that is, if at least one of the
following conditions applies:

e The page is not in main memory (Present flag cleared).
e The page allows only Read access (Read/ Wit e flag cleared).

e Either Accessed or Dirty is cleared (Linux always forces these flags to be set for every existing
Page Table).

The pud_bad and pgd_bad macros always yield 0. No pt e_bad macro is defined, because it is legal for
a Page Table entry to refer to a page that is not present in main memory, not writable, or not
accessible at all.

The pt e_present macro yields the value 1 if either the Present flag or the Page Size flag of a Page
Table entry is equal to 1, the value O otherwise. Recall that the Page Si ze flag in Page Table entries
has no meaning for the paging unit of the microprocessor; the kernel, however, marks Pr esent
equal to O and Page Si ze equal to 1 for the pages present in main memory but without read, write,
or execute privileges. In this way, any access to such pages triggers a Page Fault exception because
Present is cleared, and the kernel can detect that the fault is not due to a missing page by checking
the value of Page Si ze.

The pnd_present macro yields the value 1 if the Present flag of the corresponding entry is equal to 1
that is, if the corresponding page or Page Table is loaded in main memory. The pud_present and

pgd_present macros always yield the value 1.

The functions listed in Table 2-5 query the current value of any of the flags included in a Page Table
entry; with the exception of pte _fil e(), these functions work properly only on Page Table entries for
which pte_present returns 1.

Table 2-5. Page flag reading functions

Function

Description
name
pte_user() Reads the User/ Supervi sor flag

Reads the User/ Supervi sor flag (pages on the 80 x 86 processor cannot be

t d . .
pte_read() protected against reading)
pte_wite() Reads the Read/ Wite flag

pte exec() Reads the User/ Supervi sor flag (pages on the 80 x 86 processor cannot be
- protected against code execution)

pte_dirty() ReadstheDirty flag

pte_young() Reads the Accessed flag

Reads the Dirty flag (when the Present flag is cleared and the Dirty flag is set, the

pre_file() page belongs to a non-linear disk file mapping; see Chapter 16)

Another group of functions listed in Table 2-6 sets the value of the flags in a Page Table entry.

Table 2-6. Page flag setting functions

Function name Description

nk_pte_huge() Sets the Page Size and Present flags of a Page Table entry
pte_wprotect() Clears the Read/ Wit e flag

pte_rdprotect() Clears the User/ Super vi sor flag

pte_exprotect () Clears the User/ Super vi sor flag

pte_nmkwite() Sets the Read/ Wi te flag

pte_nkread() Sets the User/ Super vi sor flag

pte_nkexec() Sets the User/ Super vi sor flag

pte_nkcl ean() Clears the Dirty flag

pte_nkdirty() Sets the Dirty flag

pte_nkol d() Clears the Accessed flag (makes the page old)

pt e_nkyoung() Sets the Accessed flag (makes the page young)

pte_nodi fy(p, V) Sets all access rights in a Page Table entry p to a specified value v
ptep_set_wrprotect() Like pte_wrprotect(), but acts on a pointer to a Page Table entry

If the Dirty flag is set, sets the page's access rights to a specified
ptep_set access_flags() value and invokes flush_t| b_page() (see the section "Translation
Lookaside Buffers (TLB)" later in this chapter)

ptep_nkdirty() Like pte_nkdirty() but acts on a pointer to a Page Table entry

Function name

ptep_test_and_clear_dirty(

)

ptep_test_and_cl ear_young(

)

Description

Like pte_nkcl ean() but acts on a pointer to a Page Table entry and
returns the old value of the flag

Like pte_nkol d() but acts on a pointer to a Page Table entry and
returns the old value of the flag

Now, let's discuss the macros listed in Table 2-7 that combine a page address and a group of
protection flags into a page table entry or perform the reverse operation of extracting the page
address from a page table entry. Notice that some of these macros refer to a page through the linear
address of its "page descriptor” (see the section "Page Descriptors™ in Chapter 8) rather than the
linear address of the page itself.

Table 2-7. Macros acting on Page Table entries

Macro name

pgd_index(addr)

pgd_of f set (nm addr)

pgd_of f set _k(addr)

pgd_page(pgd)

pud_of f set (pgd, addr)

pud_page(pud)

pmd_index(addr)

prmd_of f set (pud, addr)

pnd_page(pnd)

Description

Yields the index (relative position) of the entry in the Page Global
Directory that maps the linear address addr .

Receives as parameters the address of a memory descriptor cw (see
Chapter 9) and a linear address addr . The macro yields the linear
address of the entry in a Page Global Directory that corresponds to the
address addr ; the Page Global Directory is found through a pointer within
the memory descriptor.

Yields the linear address of the entry in the master kernel Page Global
Directory that corresponds to the address addr (see the later section
"Kernel Page Tables").

Yields the page descriptor address of the page frame containing the Page
Upper Directory referred to by the Page Global Directory entry pgd. In a
two- or three-level paging system, this macro is equivalent to pud_page()
applied to the folded Page Upper Directory entry.

Receives as parameters a pointer pgd to a Page Global Directory entry
and a linear address addr . The macro yields the linear address of the
entry in a Page Upper Directory that corresponds to addr. In a two- or
three-level paging system, this macro yields pgd, the address of a Page
Global Directory entry.

Yields the linear address of the Page Middle Directory referred to by the
Page Upper Directory entry pud. In a two-level paging system, this macro
is equivalent to pnmd_page() applied to the folded Page Middle Directory
entry.

Yields the index (relative position) of the entry in the Page Middle
Directory that maps the linear address addr .

Receives as parameters a pointer pud to a Page Upper Directory entry
and a linear address addr . The macro yields the address of the entry in a
Page Middle Directory that corresponds to addr. In a two-level paging
system, it yields pud, the address of a Page Global Directory entry.

Yields the page descriptor address of the Page Table referred to by the
Page Middle Directory entry pnd. In a two-level paging system, pnd is
actually an entry of a Page Global Directory.

Macro name Description

Receives as parameters the address of a page descriptor p and a group

nk_pt , t . . .
—pte(p. prot) of access rights prot, and builds the corresponding Page Table entry.

Yields the index (relative position) of the entry in the Page Table that

pte_index(addr) maps the linear address addr .

Yields the linear address of the Page Table that corresponds to the linear

pte_of fset_kernel (dir, address addr mapped by the Page Middle Directory dir. Used only on the

addr) master kernel page tables (see the later section "Kernel Page Tables").
Receives as parameters a pointer dir to a Page Middle Directory entry
and a linear address addr ; it yields the linear address of the entry in the
Page Table that corresponds to the linear address addr . If the Page Table

pte_of fset _map(dir, is kept in high memory, the kernel establishes a temporary kernel

addr) mapping (see the section "Kernel Mappings of High-Memory Page

Frames" in Chapter 8), to be released by means of pt e_unnmap. The
macros pte_of fset _nmap_nest ed and pte_unmap_nest ed are identical, but
they use a different temporary kernel mapping.

Returns the page descriptor address of the page referenced by the Page

t
pte_page(x) Table entry x.

Extracts from the content pt e of a Page Table entry the file offset
pte_to_pgoff(pte) corresponding to a page belonging to a non-linear file memory mapping
(see the section "Non-Linear Memory Mappings" in Chapter 16).

Sets up the content of a Page Table entry for a page belonging to a non-

ff_t t ffset - . .
pgoff_to_pte(offset) linear file memory mapping.

The last group of functions of this long list was introduced to simplify the creation and deletion of
page table entries.

When two-level paging is used, creating or deleting a Page Middle Directory entry is trivial. As we
explained earlier in this section, the Page Middle Directory contains a single entry that points to the
subordinate Page Table. Thus, the Page Middle Directory entry is the entry within the Page Global
Directory, too. When dealing with Page Tables, however, creating an entry may be more complex,
because the Page Table that is supposed to contain it might not exist. In such cases, it is necessary
to allocate a new page frame, fill it with zeros, and add the entry.

If PAE is enabled, the kernel uses three-level paging. When the kernel creates a new Page Global
Directory, it also allocates the four corresponding Page Middle Directories; these are freed only when
the parent Page Global Directory is released.

When two or three-level paging is used, the Page Upper Directory entry is always mapped as a
single entry within the Page Global Directory.

As usual, the description of the functions listed in Table 2-8 refers to the 80 x 86 architecture.

Table 2-8. Page allocation functions

Function name Description

Function name Description

Allocates a new Page Global Directory; if PAE is enabled, it also allocates
the three children Page Middle Directories that map the User Mode linear
addresses. The argument mm (the address of a memory descriptor) is
ignored on the 80 x 86 architecture.

pgd_al l oc(nmm

Releases the Page Global Directory at address pgd; if PAE is enabled, it
pgd_free(pgd) also releases the three Page Middle Directories that map the User Mode
linear addresses.

pud_al I oc(mm pgd, In a two- or three-level paging system, this function does nothing: it
addr) simply returns the linear address of the Page Global Directory entry pgd.
pud_free(x) In a two- or three-level paging system, this macro does nothing.

Defined so generic three-level paging systems can allocate a new Page
Middle Directory for the linear address addr . If PAE is not enabled, the
pnd_al | oc(nm pud, function simply returns the input parameter pud that is, the address of
addr) the entry in the Page Global Directory. If PAE is enabled, the function
returns the linear address of the Page Middle Directory entry that maps
the linear address addr . The argument cw is ignored.

Does nothing, because Page Middle Directories are allocated and

md_f . . :
prd_f ree(x) deallocated together with their parent Page Global Directory.

Receives as parameters the address of a Page Middle Directory entry pnd
and a linear address addr, and returns the address of the Page Table
entry corresponding to addr . If the Page Middle Directory entry is null,
the function allocates a new Page Table by invoking pte_al | oc_one(). If
a new Page Table is allocated, the entry corresponding to addr is
initialized and the User/ Supervi sor flag is set. If the Page Table is kept in
high memory, the kernel establishes a temporary kernel mapping (see
the section "Kernel Mappings of High-Memory Page Frames" in Chapter
8), to be released by pte_unmap.

pte_all oc_map(nm pnd,
addr)

If the Page Middle Directory entry pnd associated with the address addr is
pte_alloc_kernel(mm, null, the function allocates a new Page Table. It then returns the linear
pmd, addr) address of the Page Table entry associated with addr . Used only for

master kernel page tables (see the later section "Kernel Page Tables™).

pte_free(pte) Releases the Page Table associated with the pt e page descriptor pointer.
pte_free_kernel (pte) Equivalent to pte_free(), but used for master kernel page tables.

Clears the contents of the page tables of a process from linear address
start to end by iteratively releasing its Page Tables and clearing the Page
Middle Directory entries.

cl ear _page_range(nmu,
start, end)

2.5.3. Physical Memory Layout

During the initialization phase the kernel must build a physical addresses map that specifies which
physical address ranges are usable by the kernel and which are unavailable (either because they
map hardware devices' 1/0 shared memory or because the corresponding page frames contain BIOS
data).

The kernel considers the following page frames as reserved :

e Those falling in the unavailable physical address ranges

e Those containing the kernel's code and initialized data structures

A page contained in a reserved page frame can never be dynamically assigned or swapped to disk.

As a general rule, the Linux kernel is installed in RAM starting from the physical address 0x00100000
i.e., from the second megabyte. The total number of page frames required depends on how the
kernel is configured. A typical configuration yields a kernel that can be loaded in less than 3 MB of

RAM.

Why isn't the kernel loaded starting with the first available megabyte of RAM? Well, the PC
architecture has several peculiarities that must be taken into account. For example:

e Page frame O is used by BIOS to store the system hardware configuration detected during the
Power-On Self-Test(POST); the BIOS of many laptops, moreover, writes data on this page

frame even after the system is initialized.

e Physical addresses ranging from 0x000a0000 to 0x000fffff are usually reserved to BIOS
routines and to map the internal memory of ISA graphics cards. This area is the well-known
hole from 640 KB to 1 MB in all IBM-compatible PCs: the physical addresses exist but they are
reserved, and the corresponding page frames cannot be used by the operating system.

e Additional page frames within the first megabyte may be reserved by specific computer
models. For example, the IBM ThinkPad maps the 0xa0 page frame into the 0x9f one.

In the early stage of the boot sequence (see Appendix A), the kernel queries the BIOS and learns the
size of the physical memory. In recent computers, the kernel also invokes a BIOS procedure to build
a list of physical address ranges and their corresponding memory types.

Later, the kernel executes the nachi ne_speci fi c_nenory_set up(

) function, which builds the physical

addresses map (see Table 2-9 for an example). Of course, the kernel builds this table on the basis of
the BIOS list, if this is available; otherwise the kernel builds the table following the conservative
default setup: all page frames with numbers from 0x9f (LOAVEMSI ZE()) to 0x100 (HI GH_MEMORY) are

marked as reserved.

Table 2-9. Example of BIOS-provided physical addresses map

Start

0x00000000
0x000f 0000
0x00100000
0x07f f 0000
0x07f f 3000
oxf fff0000

End

0x0009f f f f
0x000f ff ff
Ox07feffff
0x07ff2fff
OxO7ffffff
Oxffffffff

Type
Usable
Reserved
Usable
ACPI data
ACPI NVS

Reserved

A typical configuration for a computer having 128 MB of RAM is shown in Table 2-9. The physical
address range from 0x07f f 0000 to 0x07f f 2f f f stores information about the hardware devices of the
system written by the BIOS in the POST phase; during the initialization phase, the kernel copies
such information in a suitable kernel data structure, and then considers these page frames usable.
Conversely, the physical address range of 0x07f f 3000 to 0x07ffffff is mapped to ROM chips of the
hardware devices. The physical address range starting from 0xf f f f 0000 is marked as reserved,
because it is mapped by the hardware to the BIOS's ROM chip (see Appendix A). Notice that the
BIOS may not provide information for some physical address ranges (in the table, the range is
0x000a0000 to 0x000ef fff). To be on the safe side, Linux assumes that such ranges are not usable.

The kernel might not see all physical memory reported by the BIOS: for instance, the kernel can
address only 4 GB of RAM if it has not been compiled with PAE support, even if a larger amount of

physical memory is actually available. The setup_nenory() function is invoked right after

machi ne_speci fi c_nenory_setup(): it analyzes the table of physical memory regions and initializes
a few variables that describe the kernel's physical memory layout. These variables are shown in
Table 2-10.

Table 2-10. Variables describing the kernel's physical memory layout

Variable name Description

num physpages Page frame number of the highest usable page frame

total ram pages Total number of usable page frames

min_low_pfn Page frame number of the first usable page frame after the kernel image in RAM
max_pfn Page frame number of the last usable page frame

Page frame number of the last page frame directly mapped by the kernel (low

max_| ow_pfn
memory)

totalhigh_pages Total number of page frames not directly mapped by the kernel (high memory)

hi ghstart _pfn Page frame number of the first page frame not directly mapped by the kernel

hi ghend_pfn Page frame number of the last page frame not directly mapped by the kernel

To avoid loading the kernel into groups of noncontiguous page frames, Linux prefers to skip the first
megabyte of RAM. Clearly, page frames not reserved by the PC architecture will be used by Linux to
store dynamically assigned pages.

Figure 2-13 shows how the first 3 MB of RAM are filled by Linux. We have assumed that the kernel
requires less than 3 MB of RAM.

The symbol _t ext, which corresponds to physical address 0x00100000, denotes the address of the
first byte of kernel code. The end of the kernel code is similarly identified by the symbol _et ext .
Kernel data is divided into two groups: initialized and uninitialized. The initialized data starts right
after _et ext and ends at _edat a. The uninitialized data follows and ends up at _end.

The symbols appearing in the figure are not defined in Linux source code; they are produced while
compiling the kernel.[X1

['1You can find the linear address of these symbols in the file System.map, which is created right after the kernel is compiled.

Figure 2-13. The first 768 page frames (3 MB) in Linux 2.6

Page frame §
1] 1 (usf 0100 Ox2ff

_lext el _edata ond

- Unenvailable poge frames
I:l Availatre page frames

D Hemed code

D Inirialized kernel data
- Uninitialized kernel data

2.5.4. Process Page Tables

The linear address space of a process is divided into two parts:

e Linear addresses from 0x00000000 to Oxbfffffff can be addressed when the process runs in
either User or Kernel Mode.

e Linear addresses from 0xc0000000 to Oxffffffff can be addressed only when the process runs
in Kernel Mode.

When a process runs in User Mode, it issues linear addresses smaller than 0xc0000000; when it runs
in Kernel Mode, it is executing kernel code and the linear addresses issued are greater than or equal
to 0xc0000000. In some cases, however, the kernel must access the User Mode linear address space
to retrieve or store data.

The PAGE_OFFSET macro yields the value 0xc0000000; this is the offset in the linear address space of a
process where the kernel lives. In this book, we often refer directly to the number 0xc0000000
instead.

The content of the first entries of the Page Global Directory that map linear addresses lower than
0xc0000000 (the first 768 entries with PAE disabled, or the first 3 entries with PAE enabled) depends
on the specific process. Conversely, the remaining entries should be the same for all processes and
equal to the corresponding entries of the master kernel Page Global Directory (see the following
section).

2.5.5. Kernel Page Tables

The kernel maintains a set of page tables for its own use, rooted at a so-called master kernel Page
Global Directory. After system initialization, this set of page tables is never directly used by any
process or kernel thread; rather, the highest entries of the master kernel Page Global Directory are
the reference model for the corresponding entries of the Page Global Directories of every regular
process in the system.

We explain how the kernel ensures that changes to the master kernel Page Global Directory are
propagated to the Page Global Directories that are actually used by processes in the section "Linear
Addresses of Noncontiguous Memory Areas" in Chapter 8.

We now describe how the kernel initializes its own page tables. This is a two-phase activity. In fact,
right after the kernel image is loaded into memory, the CPU is still running in real mode; thus,
paging is not enabled.

In the first phase, the kernel creates a limited address space including the kernel's code and data
segments, the initial Page Tables, and 128 KB for some dynamic data structures. This minimal
address space is just large enough to install the kernel in RAM and to initialize its core data
structures.

In the second phase, the kernel takes advantage of all of the existing RAM and sets up the page
tables properly. Let us examine how this plan is executed.

2.5.5.1. Provisional kernel Page Tables

A provisional Page Global Directory is initialized statically during kernel compilation, while the
provisional Page Tables are initialized by the startup_32() assembly language function defined in
arch/i386/kernel/head.S . We won't bother mentioning the Page Upper Directories and Page Middle
Directories anymore, because they are equated to Page Global Directory entries. PAE support is not
enabled at this stage.

The provisional Page Global Directory is contained in the swapper _pg dir variable. The provisional
Page Tables are stored starting from pg0, right after the end of the kernel's uninitialized data
segments (symbol _end in Figure 2-13). For the sake of simplicity, let's assume that the kernel's
segments, the provisional Page Tables, and the 128 KB memory area fit in the first 8 MB of RAM. In
order to map 8 MB of RAM, two Page Tables are required.

The objective of this first phase of paging is to allow these 8 MB of RAM to be easily addressed both
in real mode and protected mode. Therefore, the kernel must create a mapping from both the linear
addresses 0x00000000 through 0x007f ffff and the linear addresses 0xc0000000 through OxcO7fffff
into the physical addresses 0x00000000 through 0x007fffff. In other words, the kernel during its
first phase of initialization can address the first 8 MB of RAM by either linear addresses identical to
the physical ones or 8 MB worth of linear addresses, starting from 0xc0000000.

The Kernel creates the desired mapping by filling all the swapper _pg_di r entries with zeroes, except
for entries O, 1, 0x300 (decimal 768), and 0x301 (decimal 769); the latter two entries span all linear
addresses between 0xc0000000 and Oxc07fffff. The 0, 1, 0x300, and 0x301 enTRies are initialized as
follows:

e The address field of entries O and 0x300 is set to the physical address of pg0, while the address
field of entries 1 and 0x301 is set to the physical address of the page frame following pgo0.
e The Present, Read/ Wite, and User/ Supervi sor flags are set in all four entries.
e The Accessed, Dirty, PCD, PWD, and Page Size flags are cleared in all four entries.
The startup_32() assembly language function also enables the paging unit. This is achieved by

loading the physical address of swapper _pg_di r into the cr 3 control register and by setting the PG
flag of the cr 0 control register, as shown in the following equivalent code fragment:

novl $swapper _pg_di r- 0xc0000000, %eax

novl % ax, %er 3 /* set the page table pointer.. */
nmovl %r 0, Yeax

orl $0x80000000, %eax

nmovl % ax, %r 0 /* ..and set paging (PG bit */

2.5.5.2. Final kernel Page Table when RAM size is less than 896 MB

The final mapping provided by the kernel page tables must transform linear addresses starting from

0xc0000000 into physical addresses starting from O.

The _ _pa macro is used to convert a linear address starting from PAGE_OFFSET to the corresponding
physical address, while the _ _va macro does the reverse.

The master kernel Page Global Directory is still stored in swapper_pg_di r. It is initialized by the
pagi ng_i nit() function, which does the following:

1. Invokes pagetable_init() to set up the Page Table entries properly.
2. Writes the physical address of swapper _pg_dir in the cr3 control register.

3. If the CPU supports PAE and if the kernel is compiled with PAE support, sets the PAE flag in the
cr 4 control register.

4. Invokes _ _flush_tlb_all() to invalidate all TLB entries.

The actions performed by pagetable_init() depend on both the amount of RAM present and on the
CPU model. Let's start with the simplest case. Our computer has less than 896 MBLZ1 of RAM, 32-bit
physical addresses are sufficient to address all the available RAM, and there is no need to activate
the PAE mechanism. (See the earlier section "The Physical Address Extension (PAE) Paging
Mechanism.")

1 The highest 128 MB of linear addresses are left available for several kinds of mappings (see sections "Fix-Mapped Linear Addresses"
later in this chapter and "Linear Addresses of Noncontiguous Memory Areas" in Chapter 8). The kernel address space left for mapping
the RAM is thus 1 GB - 128 MB = 896 MB.

The swapper _pg_di r Page Global Directory is reinitialized by a cycle equivalent to the following:

pgd = swapper_pg_dir + pgd_i ndex(PAGE_COFFSET); /* 768 */
phys_addr = 0x00000000;
whil e (phys_addr < (max_low pfn * PACGE_SIZE)) {
pmd = one_nd_table init(pgd); /* returns pgd itself */
set _pmd(pnd, _ _pnd(phys_addr | pgprot_val (_ _pgprot(0x1le3))));
/* 0x1le3 == Present, Accessed, Dirty, Read/ Wite,
Page Size, dobal */
phys_addr += PTRS_PER PTE * PACE_SI ZE; /* 0x400000 */
++pgd;

We assume that the CPU is a recent 80 x 86 microprocessor supporting 4 MB pages and "global" TLB
entries. Notice that the User/ Supervi sor flags in all Page Global Directory entries referencing linear
addresses above 0xc0000000 are cleared, thus denying processes in User Mode access to the kernel
address space. Notice also that the Page Si ze flag is set so that the kernel can address the RAM by
making use of large pages (see the section "Extended Paging" earlier in this chapter).

The identity mapping of the first megabytes of physical memory (8 MB in our example) built by the
startup_32() function is required to complete the initialization phase of the kernel. When this
mapping is no longer necessary, the kernel clears the corresponding page table entries by invoking
the zap_I| ow_nmappi ngs() function.

Actually, this description does not state the whole truth. As we'll see in the later section "Fix-Mapped
Linear Addresses,” the kernel also adjusts the entries of Page Tables corresponding to the "fix-
mapped linear addresses ."

2.5.5.3. Final kernel Page Table when RAM size is between 896 MB and 4096 MB

In this case, the RAM cannot be mapped entirely into the kernel linear address space. The best Linux
can do during the initialization phase is to map a RAM window of size 896 MB into the kernel linear
address space. If a program needs to address other parts of the existing RAM, some other linear
address interval must be mapped to the required RAM. This implies changing the value of some
page table entries. We'll discuss how this kind of dynamic remapping is done in Chapter 8.

To initialize the Page Global Directory, the kernel uses the same code as in the previous case.

2.5.5.4. Final kernel Page Table when RAM size is more than 4096 MB

Let's now consider kernel Page Table initialization for computers with more than 4 GB; more
precisely, we deal with cases in which the following happens:

e The CPU model supports Physical Address Extension (PAE).
e The amount of RAM is larger than 4 GB.
e The kernel is compiled with PAE support.

Although PAE handles 36-bit physical addresses, linear addresses are still 32-bit addresses. As in the
previous case, Linux maps a 896-MB RAM window into the kernel linear address space; the
remaining RAM is left unmapped and handled by dynamic remapping, as described in Chapter 8. The
main difference with the previous case is that a three-level paging model is used, so the Page Global
Directory is initialized by a cycle equivalent to the following:

pgd_i dx = pgd_i ndex(PAGE_OFFSET); /* 3 */
for (i=0; i<pgd_idx; i++)
set _pgd(swapper_pg_dir + i, _ _pgd(_ _pa(enpty_zero_page) + 0x001));
/* 0x001 == Present */
pgd = swapper_pg _dir + pgd_idx;
phys_addr = 0x00000000;
for (; 1<PTRS_PER _PGD; ++i, ++pgd) {
pmd = (pnd_t *) alloc_bootnem| ow pages(PACE_SI ZE);
set _pgd(pgd, _ _pgd(_ _pa(pnd) | 0x001)); /* 0x001 == Present */
if (phys_addr < max_low pfn * PAGE_SI ZE)
for (j=0; j < PTRS_PER PMD /* 512 */
&& phys_addr < max_| ow_pf n* PAGE_SI ZE; ++j) {
set _pmd(pnd, _ _pnd(phys_addr |
pgprot _val (_ _pgprot(0x1le3))));
/* 0x1le3 == Present, Accessed, Dirty, Read/Wite,
Page Size, dobal */
phys_addr += PTRS_PER PTE * PACE S| ZE; /* 0x200000 */
}

}
swapper _pg _dir[0] = swapper_pg_dir[pgd_idx];

The kernel initializes the first three entries in the Page Global Directory corresponding to the user
linear address space with the address of an empty page (enpty_zero_page). The fourth entry is
initialized with the address of a Page Middle Directory (pnd) allocated by invoking

al | oc_boot nem | ow _pages(). The first 448 entries in the Page Middle Directory (there are 512
entries, but the last 64 are reserved for noncontiguous memory allocation; see the section
"Noncontiguous Memory Area Management" in Chapter 8) are filled with the physical address of the
first 896 MB of RAM.

Notice that all CPU models that support PAE also support large 2-MB pages and global pages. As in
the previous cases, whenever possible, Linux uses large pages to reduce the number of Page Tables.

The fourth Page Global Directory entry is then copied into the first entry, so as to mirror the
mapping of the low physical memory in the first 896 MB of the linear address space. This mapping is
required in order to complete the initialization of SMP systems: when it is no longer necessary, the
kernel clears the corresponding page table entries by invoking the zap_| ow _mappi ngs() function, as
in the previous cases.

2.5.6. Fix-Mapped Linear Addresses

We saw that the initial part of the fourth gigabyte of kernel linear addresses maps the physical
memory of the system. However, at least 128 MB of linear addresses are always left available
because the kernel uses them to implement noncontiguous memory allocation and fix-mapped linear
addresses.

Noncontiguous memory allocation is just a special way to dynamically allocate and release pages of
memory, and is described in the section "Linear Addresses of Noncontiguous Memory Areas" in
Chapter 8. In this section, we focus on fix-mapped linear addresses.

Basically, a fix-mapped linear address is a constant linear address like 0xf f f f c0O00 whose
corresponding physical address does not have to be the linear address minus 0xc000000, but rather
a physical address set in an arbitrary way. Thus, each fix-mapped linear address maps one page
frame of the physical memory. As we'll see in later chapters, the kernel uses fix-mapped linear
addresses instead of pointer variables that never change their value.

Fix-mapped linear addresses are conceptually similar to the linear addresses that map the first 896
MB of RAM. However, a fix-mapped linear address can map any physical address, while the mapping
established by the linear addresses in the initial portion of the fourth gigabyte is linear (linear
address X maps physical address X-PAGE_OFFSET).

With respect to variable pointers, fix-mapped linear addresses are more efficient. In fact,
dereferencing a variable pointer requires one memory access more than dereferencing an immediate
constant address. Moreover, checking the value of a variable pointer before dereferencing it is a
good programming practice; conversely, the check is never required for a constant linear address.

Each fix-mapped linear address is represented by a small integer index defined in the enum
fi xed_addresses data structure:

enum fi xed_addresses {
FI X_HOLE,
FI X _VSYSCALL,
FI X_API C_BASE,
FI X_ I O_API C BASE 0,
[...]

_end_of fixed_addresses

}s

Fix-mapped linear addresses are placed at the end of the fourth gigabyte of linear addresses. The
fix_to_virt() function computes the constant linear address starting from the index:

inline unsigned long fix to virt(const unsigned int idx)
{
if (idx >= _ _end_of _fixed_addresses)

_ _this_fixmap_does_not _exist();

return (OxfffffOOOUL - (idx << PAGE_SHI FT));

Let's assume that some kernel function invokes fi x_to_virt (Fl X_| OAPI C_BASE 0) . Because the
function is declared as "inline," the C compiler does not generate a call tofix_to virt(), but
inserts its code in the calling function. Moreover, the check on the index value is never performed at
runtime. In fact, FI X_| OAPI C_BASE 0 is a constant equal to 3, so the compiler can cut away the i f
statement because its condition is false at compile time. Conversely, if the condition is true or the
argument of fix_to virt() is not a constant, the compiler issues an error during the linking phase
because the symbol _ _this_fixmap_does_not _exi st is not defined anywhere. Eventually, the
compiler computes 0xf f f f f 000- (3<<PAGE_SHI FT) and replaces the fix_to_virt() function call with
the constant linear address 0xf f f f c000.

To associate a physical address with a fix-mapped linear address, the kernel uses the

set _fixmap(idx, phys) and set _fi xmap_nocache(i dx, phys) macros. Both of them initialize the Page
Table entry corresponding to the fi x_to_virt(idx) linear address with the physical address phys;
however, the second function also sets the PCD flag of the Page Table entry, thus disabling the
hardware cache when accessing the data in the page frame (see the section "Hardware Cache"
earlier in this chapter). Conversely, cl ear _fi xmap(i dx) removes the linking between a fix-mapped
linear address i dx and the physical address.

2.5.7. Handling the Hardware Cache and the TLB

The last topic of memory addressing deals with how the kernel makes an optimal use of the
hardware caches. Hardware caches and Translation Lookaside Buffers play a crucial role in boosting
the performance of modern computer architectures. Several techniques are used by kernel
developers to reduce the number of cache and TLB misses.

2.5.7.1. Handling the hardware cache

As mentioned earlier in this chapter, hardware caches are addressed by cache lines. The
L1_CACHE_BYTES macro yields the size of a cache line in bytes. On Intel models earlier than the
Pentium 4, the macro yields the value 32; on a Pentium 4, it yields the value 128.

To optimize the cache hit rate, the kernel considers the architecture in making the following
decisions.

e The most frequently used fields of a data structure are placed at the low offset within the data
structure, so they can be cached in the same line.

e When allocating a large set of data structures, the kernel tries to store each of them in memory
in such a way that all cache lines are used uniformly.

Cache synchronization is performed automatically by the 80 x 86 microprocessors, thus the Linux
kernel for this kind of processor does not perform any hardware cache flushing. The kernel does
provide, however, cache flushing interfaces for processors that do not synchronize caches.

2.5.7.2. Handling the TLB

Processors cannot synchronize their own TLB cache automatically because it is the kernel, and not
the hardware, that decides when a mapping between a linear and a physical address is no longer
valid.

Linux 2.6 offers several TLB flush methods that should be applied appropriately, depending on the
type of page table change (see Table 2-11).

Table 2-11. Architecture-independent TLB-invalidating methods

Method name Description Typically used when

Flushes all TLB entries (including those that
flush_tlb_all refer to global pages, that is, pages whose
d obal flag is set)

Changing the kernel
page table entries

Flushes all TLB entries in a given range of linear Changing a range of
flush_tl b_kernel _range addresses (including those that refer to global kernel page table
pages) entries

Flushes all TLB entries of the non-global pages Performing a process

flush_tlb .
- owned by the current process switch

Flushes all TLB entries of the non-global pages

flush_tlb_nmm .
- - owned by a given process

Forking a new process
Releasing a linear

Flushes the TLB entries corresponding to a address interval of a

flush_tlb_range . ; .
linear address interval of a given process

process
Flushes the TLB entries of a given contiguous Releasing some page
flush_tlb_pgtables .
subset of page tables of a given process tables of a process

Flushes the TLB of a single Page Table entry of

flush_tl b_page ;
a given process

Processing a Page Fault

Despite the rich set of TLB methods offered by the generic Linux kernel, every microprocessor
usually offers a far more restricted set of TLB-invalidating assembly language instructions. In this
respect, one of the more flexible hardware platforms is Sun’s UltraSPARC. In contrast, Intel
microprocessors offers only two TLB-invalidating techniques:

e All Pentium models automatically flush the TLB entries relative to non-global pages when a
value is loaded into the cr 3 register.

e In Pentium Pro and later models, the i nvl pg assembly language instruction invalidates a single
TLB entry mapping a given linear address.

Table 2-12 lists the Linux macros that exploit such hardware techniques; these macros are the basic
ingredients to implement the architecture-independent methods listed in Table 2-11.

Table 2-12. TLB-invalidating macros for the Intel Pentium Pro and later
processors

Macro name Description Used by

Rewrites cr 3 register back into flush_tlb,

_ _flush_tlb() ot

flush_tlb_nmflush_tlb_range

Disables global pages by clearing
the PGE flag of cr 4, rewrites cr3
register back into itself, and sets
again the PGE flag

__flush_tlb_global() flush_tlb_all ,flush_tlb_kernel range

Executes i nvl pg assembly
language instruction with flush_tlb_page

_flush_tlb_single(addr) parameter addr

Notice that the fl ush_t| b_pgt abl es method is missing from Table 2-12: in the 80 x 86 architecture
nothing has to be done when a page table is unlinked from its parent table, thus the function
implementing this method is empty.

The architecture-independent TLB-invalidating methods are extended quite simply to multiprocessor
systems. The function running on a CPU sends an Interprocessor Interrupt (see "Interprocessor
Interrupt Handling” in Chapter 4) to the other CPUs that forces them to execute the proper TLB-
invalidating function.

As a general rule, any process switch implies changing the set of active page tables. Local TLB
entries relative to the old page tables must be flushed; this is done automatically when the kernel
writes the address of the new Page Global Directory into the cr 3 control register. The kernel
succeeds, however, in avoiding TLB flushes in the following cases:

e When performing a process switch between two regular processes that use the same set of
page tables (see the section "The schedule() Function” in Chapter 7).

¢ When performing a process switch between a regular process and a kernel thread. In fact, we'll
see in the section "Memory Descriptor of Kernel Threads"” in Chapter 9, that kernel threads do
not have their own set of page tables; rather, they use the set of page tables owned by the
regular process that was scheduled last for execution on the CPU.

Besides process switches, there are other cases in which the kernel needs to flush some entries in a
TLB. For instance, when the kernel assigns a page frame to a User Mode process and stores its
physical address into a Page Table entry, it must flush any local TLB entry that refers to the
corresponding linear address. On multiprocessor systems, the kernel also must flush the same TLB
entry on the CPUs that are using the same set of page tables, if any.

To avoid useless TLB flushing in multiprocessor systems, the kernel uses a technique called lazy TLB
mode . The basic idea is the following: if several CPUs are using the same page tables and a TLB
entry must be flushed on all of them, then TLB flushing may, in some cases, be delayed on CPUs
running kernel threads.

In fact, each kernel thread does not have its own set of page tables; rather, it makes use of the set
of page tables belonging to a regular process. However, there is no need to invalidate a TLB entry
that refers to a User Mode linear address, because no kernel thread accesses the User Mode address
space.*1

['1 By the way, the f 1 ush_t | b_al | method does not use the lazy TLB mode mechanism; itis usually invoked whenever the kernel
modifies a Page Table entry relative to the Kernel Mode address space.

When some CPUs start running a kernel thread, the kernel sets it into lazy TLB mode. When requests
are issued to clear some TLB entries, each CPU in lazy TLB mode does not flush the corresponding
entries; however, the CPU remembers that its current process is running on a set of page tables
whose TLB entries for the User Mode addresses are invalid. As soon as the CPU in lazy TLB mode
switches to a regular process with a different set of page tables, the hardware automatically flushes
the TLB entries, and the kernel sets the CPU back in non-lazy TLB mode. However, if a CPU in lazy
TLB mode switches to a regular process that owns the same set of page tables used by the
previously running kernel thread, then any deferred TLB invalidation must be effectively applied by
the kernel. This "lazy" invalidation is effectively achieved by flushing all non-global TLB entries of the
CPU.

Some extra data structures are needed to implement the lazy TLB mode. The cpu_t | bst at e variable
is a static array of NR_CPUS structures (the default value for this macro is 32; it denotes the
maximum number of CPUs in the system) consisting of an acti ve_nmfield pointing to the memory
descriptor of the current process (see Chapter 9) and a st at e flag that can assume only two values:
TLBSTATE_OK (non-lazy TLB mode) or TLBSTATE_LAZY (lazy TLB mode). Furthermore, each memory
descriptor includes a cpu_vm nask field that stores the indices of the CPUs that should receive
Interprocessor Interrupts related to TLB flushing. This field is meaningful only when the memory

descriptor belongs to a process currently in execution.

When a CPU starts executing a kernel thread, the kernel sets the st at e field of its cpu_t| bstate
element to TLBSTATE_LAZY; moreover, the cpu_vm mask field of the active memory descriptor stores
the indices of all CPUs in the system, including the one that is entering in lazy TLB mode. When
another CPU wants to invalidate the TLB entries of all CPUs relative to a given set of page tables, it
delivers an Interprocessor Interrupt to all CPUs whose indices are included in the cpu_vm nask field
of the corresponding memory descriptor.

When a CPU receives an Interprocessor Interrupt related to TLB flushing and verifies that it affects
the set of page tables of its current process, it checks whether the st at e field of its cpu_t| bstate
element is equal to TLBSTATE_LAZY. In this case, the kernel refuses to invalidate the TLB entries and
removes the CPU index from the cpu_vm mask field of the memory descriptor. This has two
consequences:

¢ As long as the CPU remains in lazy TLB mode, it will not receive other Interprocessor Interrupts
related to TLB flushing.
e If the CPU switches to another process that is using the same set of page tables as the kernel

thread that is being replaced, the kernel invokes _ _flush_tlb() to invalidate all non-global
TLB entries of the CPU.

=1

=1

Chapter 3. Processes

The concept of a process is fundamental to any multiprogramming operating system. A process is
usually defined as an instance of a program in execution; thus, if 16 users are running vi at once,
there are 16 separate processes (although they can share the same executable code). Processes are
often called tasks or threads in the Linux source code.

In this chapter, we discuss static properties of processes and then describe how process switching is
performed by the kernel. The last two sections describe how processes can be created and
destroyed. We also describe how Linux supports multithreaded applications as mentioned in Chapter
1, it relies on so-called lightweight processes (LWP).

@ prcv | NEXT

=1

3.1. Processes, Lightweight Processes, and Threads

The term "process” is often used with several different meanings. In this book, we stick to the usual
OS textbook definition: a process is an instance of a program in execution. You might think of it as
the collection of data structures that fully describes how far the execution of the program has
progressed.

Processes are like human beings: they are generated, they have a more or less significant life, they
optionally generate one or more child processes, and eventually they die. A small difference is that
sex is not really common among processes each process has just one parent.

From the kernel's point of view, the purpose of a process is to act as an entity to which system
resources (CPU time, memory, etc.) are allocated.

When a process is created, it is almost identical to its parent. It receives a (logical) copy of the
parent's address space and executes the same code as the parent, beginning at the next instruction
following the process creation system call. Although the parent and child may share the pages
containing the program code (text), they have separate copies of the data (stack and heap), so that
changes by the child to a memory location are invisible to the parent (and vice versa).

While earlier Unix kernels employed this simple model, modern Unix systems do not. They support
multithreaded applications user programs having many relatively independent execution flows
sharing a large portion of the application data structures. In such systems, a process is composed of
several user threads (or simply threads), each of which represents an execution flow of the process.
Nowadays, most multithreaded applications are written using standard sets of library functions
called pthread (POSIX thread) libraries .

Older versions of the Linux kernel offered no support for multithreaded applications. From the kernel
point of view, a multithreaded application was just a normal process. The multiple execution flows of
a multithreaded application were created, handled, and scheduled entirely in User Mode, usually by
means of a POSIX-compliant pthread library.

However, such an implementation of multithreaded applications is not very satisfactory. For
instance, suppose a chess program uses two threads: one of them controls the graphical
chessboard, waiting for the moves of the human player and showing the moves of the computer,
while the other thread ponders the next move of the game. While the first thread waits for the
human move, the second thread should run continuously, thus exploiting the thinking time of the
human player. However, if the chess program is just a single process, the first thread cannot simply
issue a blocking system call waiting for a user action; otherwise, the second thread is blocked as
well. Instead, the first thread must employ sophisticated nonblocking techniques to ensure that the
process remains runnable.

Linux uses lightweight processes to offer better support for multithreaded applications. Basically, two
lightweight processes may share some resources, like the address space, the open files, and so on.
Whenever one of them modifies a shared resource, the other immediately sees the change. Of
course, the two processes must synchronize themselves when accessing the shared resource.

A straightforward way to implement multithreaded applications is to associate a lightweight process
with each thread. In this way, the threads can access the same set of application data structures by
simply sharing the same memory address space, the same set of open files, and so on; at the same
time, each thread can be scheduled independently by the kernel so that one may sleep while another
remains runnable. Examples of POSIX-compliant pthread libraries that use Linux's lightweight
processes are LinuxThreads, Native POSIX Thread Library (NPTL), and IBM's Next Generation Posix
Threading Package (NGPT).

POSIX-compliant multithreaded applications are best handled by kernels that support "thread
groups ." In Linux a thread group is basically a set of lightweight processes that implement a
multithreaded application and act as a whole with regards to some system calls such as getpid() ,
kill() ,and _exit() . We are going to describe them at length later in this chapter.

e prey NEXT b

=1

3.2. Process Descriptor

To manage processes, the kernel must have a clear picture of what each process is doing. It must
know, for instance, the process's priority, whether it is running on a CPU or blocked on an event,
what address space has been assigned to it, which files it is allowed to address, and so on. This is
the role of the process descriptor a t ask_struct type structure whose fields contain all the
information related to a single process.[*1 As the repository of so much information, the process
descriptor is rather complex. In addition to a large number of fields containing process attributes,
the process descriptor contains several pointers to other data structures that, in turn, contain
pointers to other structures. Figure 3-1 describes the Linux process descriptor schematically.

['1 The kernel also defines the t ask_t datatype to be equivalentto struct task_struct.

The six data structures on the right side of the figure refer to specific resources owned by the
process. Most of these resources will be covered in future chapters. This chapter focuses on two
types of fields that refer to the process state and to process parent/child relationships.

3.2.1. Process State

As its name implies, the st at e field of the process descriptor describes what is currently happening
to the process. It consists of an array of flags, each of which describes a possible process state. In

the current Linux version, these states are mutually exclusive, and hence exactly one flag of st ate

always is set; the remaining flags are cleared. The following are the possible process states:

TASK_RUNNI NG

The process is either executing on a CPU or waiting to be executed.

TASK_| NTERRUPTI BLE

The process is suspended (sleeping) until some condition becomes true. Raising a hardware
interrupt, releasing a system resource the process is waiting for, or delivering a signal are
examples of conditions that might wake up the process (put its state back to TASK_RUNNI NG).

TASK_UNI NTERRUPTI BLE

Like TASK | NTERRUPTI BLE, except that delivering a signal to the sleeping process leaves its
state unchanged. This process state is seldom used. It is valuable, however, under certain
specific conditions in which a process must wait until a given event occurs without being
interrupted. For instance, this state may be used when a process opens a device file and the
corresponding device driver starts probing for a corresponding hardware device. The device
driver must not be interrupted until the probing is complete, or the hardware device could be
left in an unpredictable state.

Figure 3-1. The Linux process descriptor

state
thread_info
usage

flags

run_list

tasks
mm

real_parent

parent

tty

thread
fg
files

signal
pending

TASK_STOPPED

task_struct

..................................... -
= e
.......... - H
= . H
e i
......... .
- - i
- .
b
| g
i
i
i
. - 3
H
H
P

thread_info

mm_struct

tty_struct

fs_struct

files_struct

signal _struct

Low-fevel information
for the process

-~ Ppinters to memary
e areadescriptors

ty associated with the process

Current directary

- Poiriters to file
o descriptors

Signals received

Process execution has been stopped; the process enters this state after receiving a SI GSTOP,
S| GTSTP, SI GTTI N, or SI GTTOU signal.

TASK_TRACED

Process execution has been stopped by a debugger. When a process is being monitored by
another (such as when a debugger executes a ptrace() system call to monitor a test
program), each signal may put the process in the TASK_TRACED state.

Two additional states of the process can be stored both in the st at e field and in the exi t _state field
of the process descriptor; as the field name suggests, a process reaches one of these two states only
when its execution is terminated:

EXI T_ZOVBI E

Process execution is terminated, but the parent process has not yet issued a wait4() or
wai t pi d() system call to return information about the dead process.L*l Before the wait ()-
like call is issued, the kernel cannot discard the data contained in the dead process descriptor

because the parent might need it. (See the section "Process Removal” near the end of this
chapter.)

[*1 There are other wait () -like library functions, such as wai t3() and wait(), but in Linux they are
implemented by means of the wai t4() and wai t pi d() system calls.

EXI T_DEAD

The final state: the process is being removed by the system because the parent process has
just issued await4() or waitpid() system call for it. Changing its state from EXI T_ZOWBI E to
EXI T_DEAD avoids race conditions due to other threads of execution that execute wai t () -like
calls on the same process (see Chapter 5).

The value of the st at e field is usually set with a simple assignment. For instance:

p->state = TASK_RUNNI NG

The kernel also uses the set _task_state and set _current _st at e macros: they set the state of a
specified process and of the process currently executed, respectively. Moreover, these macros
ensure that the assignment operation is not mixed with other instructions by the compiler or the
CPU control unit. Mixing the instruction order may sometimes lead to catastrophic results (see

Chapter 5).

3.2.2. Identifying a Process

As a general rule, each execution context that can be independently scheduled must have its own
process descriptor; therefore, even lightweight processes, which share a large portion of their kernel
data structures, have their own t ask_struct structures.

The strict one-to-one correspondence between the process and process descriptor makes the 32-bit
addressl 1 of the task_struct structure a useful means for the kernel to identify processes. These
addresses are referred to as process descriptor pointers. Most of the references to processes that the
kernel makes are through process descriptor pointers.

[1Asalready noted in the section "Segmentationin Linux"in Chapter 2, although technically these 32 bits are only the offset
componentofalogical address, they coincide with the linear address.

On the other hand, Unix-like operating systems allow users to identify processes by means of a
number called the Process ID (or PID), which is stored in the pi d field of the process descriptor. PIDs
are numbered sequentially: the PID of a newly created process is normally the PID of the previously
created process increased by one. Of course, there is an upper limit on the PID values; when the
kernel reaches such limit, it must start recycling the lower, unused PIDs. By default, the maximum
PID number is 32,767 (Pl D_MAX_DEFAULT - 1); the system administrator may reduce this limit by
writing a smaller value into the /proc /sys/kernel/pid_max file (/proc is the mount point of a special
filesystem, see the section "Special Filesystems" in Chapter 12). In 64-bit architectures, the system
administrator can enlarge the maximum PID number up to 4,194,303.

When recycling PID numbers, the kernel must manage a pi dmap_array bitmap that denotes which
are the PIDs currently assigned and which are the free ones. Because a page frame contains 32,768
bits, in 32-bit architectures the pi dmap_array bitmap is stored in a single page. In 64-bit
architectures, however, additional pages can be added to the bitmap when the kernel assigns a PID
number too large for the current bitmap size. These pages are never released.

Linux associates a different PID with each process or lightweight process in the system. (As we shall
see later in this chapter, there is a tiny exception on multiprocessor systems.) This approach allows
the maximum flexibility, because every execution context in the system can be uniquely identified.

On the other hand, Unix programmers expect threads in the same group to have a common PID. For
instance, it should be possible to a send a signal specifying a PID that affects all threads in the
group. In fact, the POSIX 1003.1c standard states that all threads of a multithreaded application
must have the same PID.

To comply with this standard, Linux makes use of thread groups. The identifier shared by the
threads is the PID of the thread group leader , that is, the PID of the first lightweight process in the
group; it is stored in the tgi d field of the process descriptors. The get pi d() system call returns the
value of t gi d relative to the current process instead of the value of pi d, so all the threads of a
multithreaded application share the same identifier. Most processes belong to a thread group
consisting of a single member; as thread group leaders, they have the t gi d field equal to the pi d
field, thus the get pi d() system call works as usual for this kind of process.

Later, we'll show you how it is possible to derive a true process descriptor pointer efficiently from its
respective PID. Efficiency is important because many system calls such as kil | () use the PID to
denote the affected process.

3.2.2.1. Process descriptors handling

Processes are dynamic entities whose lifetimes range from a few milliseconds to months. Thus, the
kernel must be able to handle many processes at the same time, and process descriptors are stored
in dynamic memory rather than in the memory area permanently assigned to the kernel. For each
process, Linux packs two different data structures in a single per-process memory area: a small data
structure linked to the process descriptor, namely the t hread_i nf o structure, and the Kernel Mode
process stack. The length of this memory area is usually 8,192 bytes (two page frames). For reasons
of efficiency the kernel stores the 8-KB memory area in two consecutive page frames with the first
page frame aligned to a multiple of 213; this may turn out to be a problem when little dynamic
memory is available, because the free memory may become highly fragmented (see the section "The
Buddy System Algorithm" in Chapter 8). Therefore, in the 80x86 architecture the kernel can be
configured at compilation time so that the memory area including stack and t HRead_i nf o structure
spans a single page frame (4,096 bytes).

In the section "Segmentation in Linux™ in Chapter 2, we learned that a process in Kernel Mode
accesses a stack contained in the kernel data segment, which is different from the stack used by the
process in User Mode. Because kernel control paths make little use of the stack, only a few thousand
bytes of kernel stack are required. Therefore, 8 KB is ample space for the stack and the t HRead_i nf o
structure. However, when stack and t hr ead_i nf o structure are contained in a single page frame, the
kernel uses a few additional stacks to avoid the overflows caused by deeply nested interrupts and

exceptions (see Chapter 4).

Figure 3-2 shows how the two data structures are stored in the 2-page (8 KB) memory area. The

t hread_i nf o structure resides at the beginning of the memory area, and the stack grows downward
from the end. The figure also shows that the t HRead_i nf o structure and the t ask_struct structure
are mutually linked by means of the fields t ask and t HRead_i nf o, respectively.

Figure 3-2. Storing the thread_info structure and the process kernel stack
in two page frames

D1 5

001566000
(w0 15F2878 m
a
T thead_info |
Ox015F2034 tﬂﬁk,,
-— (ITen!

(el 572000

The esp register is the CPU stack pointer, which is used to address the stack'’s top location. On 80x86
systems, the stack starts at the end and grows toward the beginning of the memory area. Right
after switching from User Mode to Kernel Mode, the kernel stack of a process is always empty, and
therefore the esp register points to the byte immediately following the stack.

The value of the esp is decreased as soon as data is written into the stack. Because the t hread_i nfo
structure is 52 bytes long, the kernel stack can expand up to 8,140 bytes.

The C language allows the t HRead_i nf o structure and the kernel stack of a process to be
conveniently represented by means of the following union construct:

uni on thread_union {
struct thread_info thread_info;
unsi gned | ong stack[2048]; /* 1024 for 4KB stacks */

}s

The t HRead_i nf o structure shown in Figure 3-2 is stored starting at address 0x015f a000, and the
stack is stored starting at address 0x015f c000. The value of the esp register points to the current top
of the stack at 0x015f a878.

The kernel uses the al l oc_t hread_i nfo and free_t hread_i nf o macros to allocate and release the
memory area storing at hread_i nf o structure and a kernel stack.

3.2.2.2. Identifying the current process

The close association between the t hr ead_i nf o structure and the Kernel Mode stack just described
offers a key benefit in terms of efficiency: the kernel can easily obtain the address of the

t hread_i nf o structure of the process currently running on a CPU from the value of the esp register.
In fact, if the t hr ead_uni on structure is 8 KB (213 bytes) long, the kernel masks out the 13 least
significant bits of esp to obtain the base address of the t hr ead_i nf o structure; on the other hand, if
the t hr ead_uni on structure is 4 KB long, the kernel masks out the 12 least significant bits of esp.
This is done by the current _thread_i nfo() function, which produces assembly language
instructions like the following:

movl $Oxffffe000, %cx /* or OxfffffO0O0 for 4KB stacks */
andl %esp, Y%ecx
movl %ecx, p

After executing these three instructions, p contains the t HRead_i nf o structure pointer of the process
running on the CPU that executes the instruction.

Most often the kernel needs the address of the process descriptor rather than the address of the

t hread_i nf o structure. To get the process descriptor pointer of the process currently running on a
CPU, the kernel makes use of the current macro, which is essentially equivalent to

current _thread_info()->task and produces assembly language instructions like the following:

nmovl $0xffffe000,%cx /* or Oxfffff0O0O0 for 4KB stacks */
andl %esp, %ecx
movl (%ecx),p

Because the t ask field is at offset O in the t hread_i nf o structure, after executing these three
instructions p contains the process descriptor pointer of the process running on the CPU.

The current macro often appears in kernel code as a prefix to fields of the process descriptor. For
example, current - >pi d returns the process ID of the process currently running on the CPU.

Another advantage of storing the process descriptor with the stack emerges on multiprocessor
systems: the correct current process for each hardware processor can be derived just by checking
the stack, as shown previously. Earlier versions of Linux did not store the kernel stack and the
process descriptor together. Instead, they were forced to introduce a global static variable called
current to identify the process descriptor of the running process. On multiprocessor systems, it was
necessary to define current as an arrayone element for each available CPU.

3.2.2.3. Doubly linked lists

Before moving on and describing how the kernel keeps track of the various processes in the system,
we would like to emphasize the role of special data structures that implement doubly linked lists.

For each list, a set of primitive operations must be implemented: initializing the list, inserting and
deleting an element, scanning the list, and so on. It would be both a waste of programmers' efforts
and a waste of memory to replicate the primitive operations for each different list.

Therefore, the Linux kernel defines the |i st _head data structure, whose only fields next and prev
represent the forward and back pointers of a generic doubly linked list element, respectively. It is
important to note, however, that the pointers in a | i st _head field store the addresses of other

I i st _head fields rather than the addresses of the whole data structures in which the i st _head
structure is included; see Figure 3-3 ().

A new list is created by using the LI ST_HEAD(|i st _nane) macro. It declares a new variable named

I'i st _name of type |i st _head, which is a dummy first element that acts as a placeholder for the head
of the new list, and initializes the prev and next fields of the | i st _head data structure so as to point
to the | i st _nane variable itself; see Figure 3-3 (b).

Figure 3-3. Doubly linked lists built with list_head data structures

list_| head list_head list_head
list head (> next = next —— next next e—.
nextll) \L orey | - prev. — prev — prev

prev

data structure 1 data structure 2 data structure 3

{a) adoubly linked listed with three elements

vt

list_head

(b) an empty doubly linked list next
prev

Several functions and macros implement the primitives, including those shown in Table Table 3-1.

Table 3-1. List handling functions and macros

Name

I'ist_add(n,p)

list_add_tail(n,p)

I'ist_del (p)
l'ist_enmpty(p)
list_entry(p,t,m

Iist_for_each(p,h)

list_for_each_entry(p, h, m

Description

Inserts an element pointed to by n right after the specified element
pointed to by p. (To insert n at the beginning of the list, set p to the
address of the list head.)

Inserts an element pointed to by n right before the specified element
pointed to by p. (To insert n at the end of the list, set p to the
address of the list head.)

Deletes an element pointed to by p. (There is no need to specify the
head of the list.)

Checks if the list specified by the address p of its head is empty.

Returns the address of the data structure of type t in which the
l'i st _head field that has the name mand the address p is included.

Scans the elements of the list specified by the address h of the head;
in each iteration, a pointer to the | i st _head structure of the list
element is returned in p.

Similar to | i st_for_each, but returns the address of the data
structure embedding the | i st _head structure rather than the address
of the | i st _head structure itself.

The Linux kernel 2.6 sports another kind of doubly linked list, which mainly differs from ali st _head
list because it is not circular; it is mainly used for hash tables, where space is important, and finding
the the last element in constant time is not. The list head is stored in an hli st _head data structure,

which is simply a pointer to the first element in the list (NULL if the list is empty). Each element is

represented by an hli st _node data structure, which includes a pointer next to the next element, and
a pointer pprev to the next field of the previous element. Because the list is not circular, the pprev
field of the first element and the next field of the last element are set to NULL. The list can be
handled by means of several helper functions and macros similar to those listed in Table 3-1:

hli st_add_head(), hlist_del(),hlist_enpty(),hlist_entry, hlist_for_each_entry, and so on.

3.2.2.4. The process list

The first example of a doubly linked list we will examine is the process list, a list that links together
all existing process descriptors. Each t ask_struct structure includes at asks field of type | i st _head
whose prev and next fields point, respectively, to the previous and to the next t ask_struct element.

The head of the process list is the init _task task_struct descriptor; it is the process descriptor of
the so-called process O or swapper (see the section "Kernel Threads" later in this chapter). The

t asks->prev field of i ni t _t ask points to the t asks field of the process descriptor inserted last in the
list.

The SET_LI NKS and REMOVE_LI NKS macros are used to insert and to remove a process descriptor in the
process list, respectively. These macros also take care of the parenthood relationship of the process
(see the section "How Processes Are Organized" later in this chapter).

Another useful macro, called f or _each_process, scans the whole process list. It is defined as:

#define for_each_process(p) \
for (p=& nit_task; (p=list_entry((p)->tasks.next, \
struct task_struct, tasks) \
) = &nit_task;)

The macro is the loop control statement after which the kernel programmer supplies the loop. Notice
how the i nit _task process descriptor just plays the role of list header. The macro starts by moving
pastinit_task to the next task and continues until it reaches i nit _t ask again (thanks to the
circularity of the list). At each iteration, the variable passed as the argument of the macro contains
the address of the currently scanned process descriptor, as returned by the li st _entry macro.

3.2.2.5. The lists of TASK_RUNNING processes

When looking for a new process to run on a CPU, the kernel has to consider only the runnable
processes (that is, the processes in the TASK_RUNNI NG state).

Earlier Linux versions put all runnable processes in the same list called runqueue. Because it would
be too costly to maintain the list ordered according to process priorities, the earlier schedulers were
compelled to scan the whole list in order to select the "best" runnable process.

Linux 2.6 implements the runqueue differently. The aim is to allow the scheduler to select the best
runnable process in constant time, independently of the number of runnable processes. We'll defer
to Chapter 7 a detailed description of this new kind of runqueue, and we'll provide here only some
basic information.

The trick used to achieve the scheduler speedup consists of splitting the runqueue in many lists of
runnable processes, one list per process priority. Each t ask_struct descriptor includes arun_li st
field of type 1i st _head. If the process priority is equal to k (a value ranging between 0 and 139), the
run_l i st field links the process descriptor into the list of runnable processes having priority k.
Furthermore, on a multiprocessor system, each CPU has its own runqueue, that is, its own set of
lists of processes. This is a classic example of making a data structures more complex to improve
performance: to make scheduler operations more efficient, the runqueue list has been split into 140

different lists!

As we'll see, the kernel must preserve a lot of data for every runqueue in the system; however, the
main data structures of a runqueue are the lists of process descriptors belonging to the runqueue;
all these lists are implemented by a single pri o_array_t data structure, whose fields are shown in
Table 3-2.

Table 3-2. The fields of the prio_array_t data structure

Type Field Description
i nt nr_active The number of process descriptors linked into the lists

A priority bitmap: each flag is set if and only if the corresponding

i d | 5 bi t Lo L
unsigned long [3] tHTEp priority list is not empty

struct list_head

[140] queue The 140 heads of the priority lists

The enqueue_t ask(p, array) function inserts a process descriptor into a runqueue list; its code is
essentially equivalent to:

list _add tail (&p->run_list, &array->queue[p->prio]);
__set_bit(p->prio, array->bitnmap);
array->nr_active++;

p->array = array;

The pri o field of the process descriptor stores the dynamic priority of the process, while the array
field is a pointer to the prio_array_t data structure of its current runqueue. Similarly, the
dequeue_t ask(p, array) function removes a process descriptor from a runqueue list.

3.2.3. Relationships Among Processes

Processes created by a program have a parent/child relationship. When a process creates multiple
children , these children have sibling relationships. Several fields must be introduced in a process
descriptor to represent these relationships; they are listed in Table 3-3 with respect to a given
process P. Processes O and 1 are created by the kernel; as we'll see later in the chapter, process 1
(init) is the ancestor of all other processes.

Table 3-3. Fields of a process descriptor used to express parenthood
relationships

Field name Description

Points to the process descriptor of the process that created P or to the descriptor of
process 1 (init) if the parent process no longer exists. (Therefore, when a user starts a
background process and exits the shell, the background process becomes the child of
init.)

real _parent

Field name Description

Points to the current parent of P (this is the process that must be signaled when the
child process terminates); its value usually coincides with that of real _parent. It may

par ent occasionally differ, such as when another process issues a ptrace() system call
requesting that it be allowed to monitor P (see the section "Execution Tracing" in
Chapter 20).

children The head of the list containing all children created by P.

The pointers to the next and previous elements in the list of the sibling processes,

siblin
1hiing those that have the same parent as P.

Figure 3-4 illustrates the parent and sibling relationships of a group of processes. Process PO
successively created P1, P2, and P3. Process P3, in turn, created process P4.

Furthermore, there exist other relationships among processes: a process can be a leader of a
process group or of a login session (see "Process Management” in Chapter 1), it can be a leader of a
thread group (see "ldentifying a Process" earlier in this chapter), and it can also trace the execution
of other processes (see the section "Execution Tracing" in Chapter 20). Table 3-4 lists the fields of
the process descriptor that establish these relationships between a process P and the other
processes.

Table 3-4. The fields of the process descriptor that establish non-
parenthood relationships

Field name Description

group_| eader Process descriptor pointer of the group leader of P

si gnal - >pgrp PID of the group leader of P

tgid PID of the thread group leader of P

signal->session PID of the login session leader of P

ptrace_children The head of a list containing all children of P being traced by a debugger

ptrace_list The pointers to the next and previous elements in the real parent's list of traced
processes (used when P is being traced)

Figure 3-4. Parenthood relationships among five processes

—_— parent
_____ == sibling.next

..................... & sibling prev \
— e —— - —p children.next
—_——- b= children. prev

3.2.3.1. The pidhash table and chained lists

In several circumstances, the kernel must be able to derive the process descriptor pointer
corresponding to a PID. This occurs, for instance, in servicing the kil | () system call. When process
P1 wishes to send a signal to another process, P2, it invokes the kil | () system call specifying the
PID of P2 as the parameter. The kernel derives the process descriptor pointer from the PID and then
extracts the pointer to the data structure that records the pending signals from P2's process
descriptor.

Scanning the process list sequentially and checking the pi d fields of the process descriptors is
feasible but rather inefficient. To speed up the search, four hash tables have been introduced. Why
multiple hash tables? Simply because the process descriptor includes fields that represent different
types of PID (see Table 3-5), and each type of PID requires its own hash table.

Table 3-5. The four hash tables and corresponding fields in the process

descriptor
Hash table type Field name Description
PI DTYPE_PI D pi d PID of the process
PI DTYPE_TG D tgid PID of thread group leader process
PI DTYPE_PG D parp PID of the group leader process
PI DTYPE_SI D session PID of the session leader process

The four hash tables are dynamically allocated during the kernel initialization phase, and their
addresses are stored in the pi d_hash array. The size of a single hash table depends on the amount
of available RAM; for example, for systems having 512 MB of RAM, each hash table is stored in four
page frames and includes 2,048 entries.

The PID is transformed into a table index using the pi d_hashf n macro, which expands to:

#defi ne pid_hashfn(x) hash_long((unsigned |ong) x, pidhash_shift)

The pi dhash_shi ft variable stores the length in bits of a table index (11, in our example). The
hash_l ong() function is used by many hash functions; on a 32-bit architecture it is essentially
equivalent to:

unsi gned | ong hash_l ong(unsigned long val, unsigned int bits)
{

unsi gned [ong hash = val * 0x9e370001UL;

return hash >> (32 - bits);

Because in our example pi dhash_shi ft is equal to 11, pi d_hashf n yields values ranging between O
and 211 - 1 = 2047.

The Magic Constant

You might wonder where the 0x9e370001 constant (= 2,654,404,609) comes from. This
hash function is based on a multiplication of the index by a suitable large number, so
that the result overflows and the value remaining in the 32-bit variable can be
considered as the result of a modulus operation. Knuth suggested that good results are
obtained when the large multiplier is a prime approximately in golden ratio to 232 (32
blit being the size of the 80x86's registers). Now, 2,654,404,609 is a prime near to

17 % (f5-11/2 that can also be easily multiplied by additions and bit shifts, because it is

3 rl 3 3
equal to 27 +27 -2 427 2% 5104y,

As every basic computer science course explains, a hash function does not always ensure a one-to-
one correspondence between PIDs and table indexes. Two different PIDs that hash into the same
table index are said to be colliding.

Linux uses chaining to handle colliding PIDs; each table entry is the head of a doubly linked list of
colliding process descriptors. Figure 3-5 illustrates a PID hash table with two lists. The processes

having PIDs 2,890 and 29,384 hash into the 200th element of the table, while the process having
PID 29,385 hashes into the 1,466t element of the table.

Hashing with chaining is preferable to a linear transformation from PIDs to table indexes because at
any given instance, the number of processes in the system is usually far below 32,768 (the
maximum number of allowed PIDs). It would be a waste of storage to define a table consisting of
32,768 entries, if, at any given instance, most such entries are unused.

The data structures used in the PID hash tables are quite sophisticated, because they must keep
track of the relationships between the processes. As an example, suppose that the kernel must
retrieve all processes belonging to a given thread group, that is, all processes whose t gi d field is
equal to a given number. Looking in the hash table for the given thread group number returns just
one process descriptor, that is, the descriptor of the thread group leader. To quickly retrieve the
other processes in the group, the kernel must maintain a list of processes for each thread group. The
same situation arises when looking for the processes belonging to a given login session or belonging
to a given process group.

Figure 3-5. A simple PID hash table and chained lists

Il hash table

______ PID
199 T

______ = next element

1466 :
wsnsassans e INEVIDLS 2lement

2047

The PID hash tables' data structures solve all these problems, because they allow the definition of a
list of processes for any PID number included in a hash table. The core data structure is an array of
four pi d structures embedded in the pi ds field of the process descriptor; the fields of the pid
structure are shown in Table 3-6.

Table 3-6. The fields of the pid data structures

Type Name Description
int nr The PID number
struct hlist_node pid_chain The links to the next and previous elements in the hash chain list

struct list_head pid_list The head of the per-PID list

Figure 3-6 shows an example based on the PI DTYPE_TAd D hash table. The second entry of the

pi d_hash array stores the address of the hash table, that is, the array of hl i st _head structures
representing the heads of the chain lists. In the chain list rooted at the 71t entry of the hash table,
there are two process descriptors corresponding to the PID numbers 246 and 4,351 (double-arrow
lines represent a couple of forward and backward pointers). The PID numbers are stored in the nr
field of the pi d structure embedded in the process descriptor (by the way, because the thread group
number coincides with the PID of its leader, these numbers also are stored in the pi d field of the
process descriptors). Let us consider the per-PID list of the thread group 4,351: the head of the list
is stored in the pi d_l i st field of the process descriptor included in the hash table, while the links to
the next and previous elements of the per-PID list also are stored in the pi d_list field of each list
element.

Figure 3-6. The PID hash tables

PD TG PED SID

— R R TGID hash table
uid_haihl ||| | ' 0 10 2047
=
progess descriptor
p
pids{1] process descriptor process descriptor
{ nr=4351 & g
, pid_chain pids(1] pids(1]
pid_list = [m=4351 [=491
pid_chain pid_chain
- pid It —> pid_is
prodess descriptorn
-
pids 1]
L LELs
v
Hash chain list

The following functions and macros are used to handle the PID hash tables:

do_each_task_pid(nr, type, task)

whi |l e_each_task _pid(nr, type, task)
Mark begin and end of a do-while loop that iterates over the per-PID list associated with the
PID number nr of type type; in any iteration, t ask points to the process descriptor of the
currently scanned element.
find task_by pid_type(type, nr)
Looks for the process having PID nr in the hash table of type t ype. The function returns a
process descriptor pointer if a match is found, otherwise it returns NULL.
find_task_by_pid(nr)

Same as find_task_by_pid_type(PIDTYPE_PID, nr).

attach_pid(task, type, nr)

Inserts the process descriptor pointed to by t ask in the PID hash table of type t ype according
to the PID number nr; if a process descriptor having PID nr is already in the hash table, the
function simply inserts t ask in the per-PID list of the already present process.

detach_pid(task, type)

Removes the process descriptor pointed to by t ask from the per-PID list of type type to which
the descriptor belongs. If the per-PID list does not become empty, the function terminates.
Otherwise, the function removes the process descriptor from the hash table of type type;
finally, if the PID number does not occur in any other hash table, the function clears the
corresponding bit in the PID bitmap, so that the number can be recycled.

next _thread(task)

Returns the process descriptor address of the lightweight process that follows t ask in the hash
table list of type PI DTYPE_TG D. Because the hash table list is circular, when applied to a
conventional process the macro returns the descriptor address of the process itself.

3.2.4. How Processes Are Organized

The runqueue lists group all processes in a TASK_RUNNI NG state. When it comes to grouping processes
in other states, the various states call for different types of treatment, with Linux opting for one of
the choices shown in the following list.

e Processes in a TASK_STOPPED, EXI T_ZOMBI E, or EXI T_DEAD state are not linked in specific lists.
There is no need to group processes in any of these three states, because stopped, zombie, and
dead processes are accessed only via PID or via linked lists of the child processes for a
particular parent.

e Processes in a TASK | NTERRUPTI BLE or TASK_UNI NTERRUPTI BLE state are subdivided into many
classes, each of which corresponds to a specific event. In this case, the process state does not
provide enough information to retrieve the process quickly, so it is necessary to introduce
additional lists of processes. These are called wait queues and are discussed next.

3.2.4.1. Wait queues

Wait queues have several uses in the kernel, particularly for interrupt handling, process
synchronization, and timing. Because these topics are discussed in later chapters, we'll just say here
that a process must often wait for some event to occur, such as for a disk operation to terminate, a
system resource to be released, or a fixed interval of time to elapse. Wait queues implement
conditional waits on events: a process wishing to wait for a specific event places itself in the proper
wait queue and relinquishes control. Therefore, a wait queue represents a set of sleeping processes,
which are woken up by the kernel when some condition becomes true.

Wait queues are implemented as doubly linked lists whose elements include pointers to process
descriptors. Each wait queue is identified by a wait queue head, a data structure of type
wai t _queue_head_t:

struct _ _wait_queue_head {

spi nl ock_t 1 ock;

struct list_head task_|ist;
}.

typedef struct _ _wait_queue_head wait_queue_head_t;

Because wait queues are modified by interrupt handlers as well as by major kernel functions, the
doubly linked lists must be protected from concurrent accesses, which could induce unpredictable
results (see Chapter 5). Synchronization is achieved by the | ock spin lock in the wait queue head.
The task_Ili st field is the head of the list of waiting processes.

Elements of a wait queue list are of type wait _queue_t:

struct _ _wait_queue {
unsi gned int flags;
struct task_struct * task;
wai t _queue_func_t func;
struct list_head task_|ist;
}.

typedef struct _ _wait_queue wait_queue_t;

Each element in the wait queue list represents a sleeping process, which is waiting for some event to
occur; its descriptor address is stored in the task field. The task_I| i st field contains the pointers that
link this element to the list of processes waiting for the same event.

However, it is not always convenient to wake up all sleeping processes in a wait queue. For instance,
if two or more processes are waiting for exclusive access to some resource to be released, it makes
sense to wake up just one process in the wait queue. This process takes the resource, while the
other processes continue to sleep. (This avoids a problem known as the "thundering herd," with
which multiple processes are wakened only to race for a resource that can be accessed by one of
them, with the result that remaining processes must once more be put back to sleep.)

Thus, there are two kinds of sleeping processes: exclusive processes (denoted by the value 1 in the
fl ags field of the corresponding wait queue element) are selectively woken up by the kernel, while
nonexclusive processes (denoted by the value O in the fl ags field) are always woken up by the
kernel when the event occurs. A process waiting for a resource that can be granted to just one
process at a time is a typical exclusive process. Processes waiting for an event that may concern any
of them are nonexclusive. Consider, for instance, a group of processes that are waiting for the
termination of a group of disk block transfers: as soon as the transfers complete, all waiting
processes must be woken up. As we'll see next, the func field of a wait queue element is used to
specify how the processes sleeping in the wait queue should be woken up.

3.2.4.2. Handling wait queues

A new wait queue head may be defined by using the DECLARE_WAI T_QUEUE_HEAD(nane) macro, which
statically declares a new wait queue head variable called name and initializes its | ock and task_li st
fields. The i nit_wait queue_head() function may be used to initialize a wait queue head variable
that was allocated dynamically.

The i nit_waitqueue_entry(qg, p) function initializes a wai t _queue_t structure q as follows:
g->flags = 0;

g->task = p;
g->func = default_wake_function;

The nonexclusive process p will be awakened by def aul t _wake_function(), which is a simple
wrapper for the TRy _to_wake_up() function discussed in Chapter 7.

Alternatively, the DEFI NE_WAI T macro declares a new wai t _queue_t variable and initializes it with the

descriptor of the process currently executing on the CPU and the address of the

aut or enove_wake_function() wake-up function. This function invokes def aul t _wake_function() to
awaken the sleeping process, and then removes the wait queue element from the wait queue list.
Finally, a kernel developer can define a custom awakening function by initializing the wait queue
element with the i nit_wait queue_func_entry() function.

Once an element is defined, it must be inserted into a wait queue. The add_wait _queue() function
inserts a nonexclusive process in the first position of a wait queue list. The

add_wai t _queue_excl usive() function inserts an exclusive process in the last position of a wait
queue list. The renove wait _queue() function removes a process from a wait queue list. The

wai t queue_active() function checks whether a given wait queue list is empty.

A process wishing to wait for a specific condition can invoke any of the functions shown in the
following list.

e The sl eep_on() function operates on the current process:

voi d sl eep_on(wait_queue_head t *wQg)

{
wait _queue_t wait;
init_waitqueue_entry(&wait, current);
current->state = TASK _UNI NTERRUPTI BLE;
add_wait _queue(wg, &wait); /* wq points to the wait queue head */
schedul e();
remove_wait_queue(wqg, &wait);
}

The function sets the state of the current process to TASK_UNI NTERRUPTI BLE and inserts it into
the specified wait queue. Then it invokes the scheduler, which resumes the execution of
another process. When the sleeping process is awakened, the scheduler resumes execution of
the sl eep_on() function, which removes the process from the wait queue.

e Theinterruptible_sleep_on() function is identical to sl eep_on(), except that it sets the
state of the current process to TASK | NTERRUPTI BLE instead of setting it to
TASK_UNI NTERRUPTI BLE, so that the process also can be woken up by receiving a signal.

e The sleep_on_tinmeout() andinterruptible_sleep_on_tinmeout() functions are similar to the
previous ones, but they also allow the caller to define a time interval after which the process
will be woken up by the kernel. To do this, they invoke the schedul e_ti nmeout () function
instead of schedul e() (see the section "An Application of Dynamic Timers: the nanosleep()
System Call" in Chapter 6).

e The prepare_to wait(), prepare_to_wait_exclusive(), andfinish wait() functions,
introduced in Linux 2.6, offer yet another way to put the current process to sleep in a wait
queue. Typically, they are used as follows:

DEFI NE_VWAI T(wai t) ;
prepare_to_wait_exclusive(&w, &wait, TASK | NTERRUPTI BLE);
/* wgq is the head of the wait queue */

if (!condition)
schedul e();
finish_wait(&wm, &wait);

The prepare_to_wait() and prepare_to_wait_exclusive() functions set the process state to
the value passed as the third parameter, then set the exclusive flag in the wait queue element
respectively to O (nonexclusive) or 1 (exclusive), and finally insert the wait queue element wai t

into the list of the wait queue head wq.

As soon as the process is awakened, it executes the fini sh_wait() function, which sets again
the process state to TASK_RUNNI NG (just in case the awaking condition becomes true before
invoking schedul e()), and removes the wait queue element from the wait queue list (unless
this has already been done by the wake-up function).

e The wai t _event and wait_event _i nterrupti bl e macros put the calling process to sleep on a
wait queue until a given condition is verified. For instance, the wai t _event (wq, condi ti on)
macro essentially yields the following fragment:

DEFINE WVAI T(_ _wait);
for (;5) {
prepare_to wait(&w, & wait, TASK UN NTERRUPTI BLE);
if (condition)
br eak;
schedul e();

}
finish wait(&wy, & _wait);

A few comments on the functions mentioned in the above list: the sl eep_on() -like functions cannot
be used in the common situation where one has to test a condition and atomically put the process to
sleep when the condition is not verified; therefore, because they are a well-known source of race
conditions, their use is discouraged. Moreover, in order to insert an exclusive process into a wait
queue, the kernel must make use of the prepare_to_wait_excl usive() function (or just invoke
add_wai t _queue_excl usi ve() directly); any other helper function inserts the process as
nonexclusive. Finally, unless DEFI NE_WAI T or fini sh_wait() are used, the kernel must remove the
wait queue element from the list after the waiting process has been awakened.

The kernel awakens processes in the wait queues, putting them in the TASK_RUNNI NG state, by means
of one of the following macros: wake_up, wake_up_nr, wake_up_al | , wake_up_i nterruptible,
wake_up_interruptible_nr,wake up_interruptible_all,wake_ up_interruptible_sync, and
wake_up_l ocked. One can understand what each of these nine macros does from its name:

¢ All macros take into consideration sleeping processes in the TASK | NTERRUPTI BLE state; if the
macro name does not include the string "interruptible,”" sleeping processes in the
TASK_UNI NTERRUPTI BLE state also are considered.

e All macros wake all nonexclusive processes having the required state (see the previous bullet
item).

e The macros whose name include the string "nr" wake a given number of exclusive processes
having the required state; this number is a parameter of the macro. The macros whose names
include the string "all" wake all exclusive processes having the required state. Finally, the
macros whose names don't include "nr" or "all" wake exactly one exclusive process that has the
required state.

e The macros whose names don't include the string "sync" check whether the priority of any of
the woken processes is higher than that of the processes currently running in the systems and
invoke schedul e() if necessary. These checks are not made by the macro whose name
includes the string "sync"; as a result, execution of a high priority process might be slightly
delayed.

e The wake_up_| ocked macro is similar to wake_up, except that it is called when the spin lock in
wai t _queue_head_t is already held.

For instance, the wake_up macro is essentially equivalent to the following code fragment:

voi d wake_up(wait_queue_head_ t *q)

{
struct list_head *tnp;
wait _queue_t *curr;
list for_each(tnmp, &g->task list) {
curr = list_entry(tnmp, wait_queue_t, task |ist);
if (curr->func(curr, TASK | NTERRUPTI BLE| TASK UNI NTERRUPTI BLE,
0, NULL) && curr->flags)
br eak;
}
}

The 1i st _for_each macro scans all items in the g- >t ask_l i st doubly linked list, that is, all processes
in the wait queue. For each item, the | i st _entry macro computes the address of the corresponding
wai t _queue_t variable. The f unc field of this variable stores the address of the wake-up function,
which tries to wake up the process identified by the t ask field of the wait queue element. If a
process has been effectively awakened (the function returned 1) and if the process is exclusive
(curr->fl ags equal to 1), the loop terminates. Because all nonexclusive processes are always at the
beginning of the doubly linked list and all exclusive processes are at the end, the function always
wakes the nonexclusive processes and then wakes one exclusive process, if any exists.[*1

['1 By the way, it is rather uncommon that a wait queue includes both exclusive and nonexclusive processes.

3.2.5. Process Resource Limits

Each process has an associated set of resource limits , which specify the amount of system resources
it can use. These limits keep a user from overwhelming the system (its CPU, disk space, and so on).
Linux recognizes the following resource limits illustrated in Table 3-7.

The resource limits for the current process are stored in the current->si gnal - >rli mfield, that is, in
a field of the process's signal descriptor (see the section "Data Structures Associated with Signals" in
Chapter 11). The field is an array of elements of type struct rlinit, one for each resource limit:

struct rlimt {
unsigned long rlimcur;
unsi gned long rlimmax;

b
Table 3-7. Resource limits
Field name Description
RLI M T_AS The maximum size of process address space, in bytes. The kernel checks this
value when the process uses nal |l oc() or a related function to enlarge its
address space (see the section "The Process's Address Space™ in Chapter 9).
RLI M T_CORE The maximum core dump file size, in bytes. The kernel checks this value

when a process is aborted, before creating a core file in the current directory
of the process (see the section "Actions Performed upon Delivering a Signal”
in Chapter 11). If the limit is O, the kernel won't create the file.

Field name Description

RLI M T_CPU The maximum CPU time for the process, in seconds. If the process exceeds
the limit, the kernel sends it a SI GXCPU signal, and then, if the process
doesn't terminate, a SI GKI LL signal (see Chapter 11).

The maximum heap size, in bytes. The kernel checks this value before
RLI M T_DATA expanding the heap of the process (see the section "Managing the Heap" in

Chapter 9).

The maximum file size allowed, in bytes. If the process tries to enlarge a file
to a size greater than this value, the kernel sends it a SI GXFSZ signal.

RLI M T_FSI ZE

RLIMIT_LOCKS Maximum number of file locks (currently, not enforced).

RLI M T_MEMLOCK The maximum size of nonswappable memory, in bytes. The kernel checks
this value when the process tries to lock a page frame in memory using the
m ock() or m ockal I () system calls (see the section "Allocating a Linear
Address Interval"” in Chapter 9).

Maximum number of bytes in POSIX message queues (see the section

RLIMIT_MSGQUEUE "POSIX Message Queues" in Chapter 19).

The maximum number of open file descriptors . The kernel checks this value

RLI M T_NCFI LE
- when opening a new file or duplicating a file descriptor (see Chapter 12).

The maximum number of processes that the user can own (see the section

RLIM T_NPROC "The clone(), fork(), and vfork() System Calls" later in this chapter).

The maximum number of page frames owned by the process (currently, not
enforced).

RLIMIT_SIGPENDING The maximum number of pending signals for the process (see Chapter 11).

RLIM T_RSS

RLI M T_STACK The maximum stack size, in bytes. The kernel checks this value before
expanding the User Mode stack of the process (see the section "Page Fault
Exception Handler" in Chapter 9).

The r1i m cur field is the current resource limit for the resource. For example, current - >si gnal -
>rlinfRLIMT_CPU . rlimcur represents the current limit on the CPU time of the running process.

The rl'i m_max field is the maximum allowed value for the resource limit. By using the getrlinmt()
and setrlinmt() system calls, a user can always increase the rli m cur limit of some resource up to
rli mmax. However, only the superuser (or, more precisely, a user who has the CAP_SYS RESOURCE
capability) can increase the rli m nmax field or set the rli m cur field to a value greater than the
corresponding rl i m nmax field.

Most resource limits contain the value RLIM I NFINI TY (Oxffffffff), which means that no user limit
is imposed on the corresponding resource (of course, real limits exist due to kernel design
restrictions, available RAM, available space on disk, etc.). However, the system administrator may
choose to impose stronger limits on some resources. Whenever a user logs into the system, the
kernel creates a process owned by the superuser, which can invoke setrlinit() to decrease the
rlimmax andrlimcur fields for a resource. The same process later executes a login shell and
becomes owned by the user. Each new process created by the user inherits the content of the rlim
array from its parent, and therefore the user cannot override the limits enforced by the
administrator.

e prcv NExT

=1

3.3. Process Switch

To control the execution of processes, the kernel must be able to suspend the execution of the
process running on the CPU and resume the execution of some other process previously suspended.
This activity goes variously by the names process switch, task switch, or context switch. The next
sections describe the elements of process switching in Linux.

3.3.1. Hardware Context

While each process can have its own address space, all processes have to share the CPU registers.
So before resuming the execution of a process, the kernel must ensure that each such register is
loaded with the value it had when the process was suspended.

The set of data that must be loaded into the registers before the process resumes its execution on
the CPU is called the hardware context . The hardware context is a subset of the process execution
context, which includes all information needed for the process execution. In Linux, a part of the
hardware context of a process is stored in the process descriptor, while the remaining part is saved
in the Kernel Mode stack.

In the description that follows, we will assume the prev local variable refers to the process descriptor
of the process being switched out and next refers to the one being switched in to replace it. We can
thus define a process switch as the activity consisting of saving the hardware context of prev and
replacing it with the hardware context of next . Because process switches occur quite often, it is
important to minimize the time spent in saving and loading hardware contexts.

Old versions of Linux took advantage of the hardware support offered by the 80x86 architecture and
performed a process switch through a far jnp instructionZ] to the selector of the Task State
Segment Descriptor of the next process. While executing the instruction, the CPU performs a
hardware context switch by automatically saving the old hardware context and loading a new one.
But Linux 2.6 uses software to perform a process switch for the following reasons:

[1far jnpinstructions modify boththe cs and ei p registers, while simple j np instructions modify only ei p.

e Step-by-step switching performed through a sequence of nov instructions allows better control
over the validity of the data being loaded. In particular, it is possible to check the values of the
ds and es segmentation registers, which might have been forged by a malicious user. This type
of checking is not possible when using a single far j np instruction.

e The amount of time required by the old approach and the new approach is about the same.
However, it is not possible to optimize a hardware context switch, while there might be room
for improving the current switching code.

Process switching occurs only in Kernel Mode. The contents of all registers used by a process in User
Mode have already been saved on the Kernel Mode stack before performing process switching (see

Chapter 4). This includes the contents of the ss and esp pair that specifies the User Mode stack
pointer address.

3.3.2. Task State Segment

The 80x86 architecture includes a specific segment type called the Task State Segment (TSS), to

store hardware contexts. Although Linux doesn't use hardware context switches, it is nonetheless
forced to set up a TSS for each distinct CPU in the system. This is done for two main reasons:

e When an 80x86 CPU switches from User Mode to Kernel Mode, it fetches the address of the
Kernel Mode stack from the TSS (see the sections "Hardware Handling of Interrupts and
Exceptions" in Chapter 4 and "Issuing a System Call via the sysenter Instruction" in Chapter

10).

e When a User Mode process attempts to access an 1/0 port by means of ani n or out instruction,
the CPU may need to access an I/0 Permission Bitmap stored in the TSS to verify whether the
process is allowed to address the port.

More precisely, when a process executes an i n or out 1/0 instruction in User Mode, the control
unit performs the following operations:

1. It checks the 2-bit IOPL field in the ef | ags register. If it is set to 3, the control unit
executes the 1/0 instructions. Otherwise, it performs the next check.

2. It accesses the t r register to determine the current TSS, and thus the proper 1/0
Permission Bitmap.

3. It checks the bit of the 1/0 Permission Bitmap corresponding to the 1/0 port specified in
the 1/0 instruction. If it is cleared, the instruction is executed; otherwise, the control unit
raises a "General protection " exception.

The tss_struct structure describes the format of the TSS. As already mentioned in Chapter 2, the
init_tss array stores one TSS for each CPU on the system. At each process switch, the kernel
updates some fields of the TSS so that the corresponding CPU's control unit may safely retrieve the
information it needs. Thus, the TSS reflects the privilege of the current process on the CPU, but
there is no need to maintain TSSs for processes when they're not running.

Each TSS has its own 8-byte Task State Segment Descriptor (TSSD). This descriptor includes a 32-
bit Base field that points to the TSS starting address and a 20-bit Li ni t field. The S flag of a TSSD is
cleared to denote the fact that the corresponding TSS is a System Segment (see the section
"Segment Descriptors" in Chapter 2).

The Type field is set to either 9 or 11 to denote that the segment is actually a TSS. In the Intel's
original design, each process in the system should refer to its own TSS; the second least significant
bit of the Type field is called the Busy bit; it is set to 1 if the process is being executed by a CPU, and
to O otherwise. In Linux design, there is just one TSS for each CPU, so the Busy bit is always set to
1.

The TSSDs created by Linux are stored in the Global Descriptor Table (GDT), whose base address is
stored in the gdtr register of each CPU. The t r register of each CPU contains the TSSD Selector of
the corresponding TSS. The register also includes two hidden, nonprogrammable fields: the Base
and Limit fields of the TSSD. In this way, the processor can address the TSS directly without having
to retrieve the TSS address from the GDT.

3.3.2.1. The thread field

At every process switch, the hardware context of the process being replaced must be saved
somewhere. It cannot be saved on the TSS, as in the original Intel design, because Linux uses a
single TSS for each processor, instead of one for every process.

Thus, each process descriptor includes a field called t hr ead of type t hread_struct, in which the
kernel saves the hardware context whenever the process is being switched out. As we'll see later,
this data structure includes fields for most of the CPU registers, except the general-purpose registers

such as eax, ebx, etc., which are stored in the Kernel Mode stack.

3.3.3. Performing the Process Switch

A process switch may occur at just one well-defined point: the schedul e() function, which is
discussed at length in Chapter 7. Here, we are only concerned with how the kernel performs a
process switch.

Essentially, every process switch consists of two steps:

1. Switching the Page Global Directory to install a new address space; we'll describe this step in
Chapter 9.

2. Switching the Kernel Mode stack and the hardware context, which provides all the information
needed by the kernel to execute the new process, including the CPU registers.

Again, we assume that prev points to the descriptor of the process being replaced, and next to the
descriptor of the process being activated. As we'll see in Chapter 7, prev and next are local variables
of the schedul e() function.

3.3.3.1. The switch_to macro

The second step of the process switch is performed by the swi tch_t o macro. It is one of the most
hardware-dependent routines of the kernel, and it takes some effort to understand what it does.

First of all, the macro has three parameters, called prev, next, and | ast . You might easily guess the
role of prev and next : they are just placeholders for the local variables prev and next, that is, they
are input parameters that specify the memory locations containing the descriptor address of the
process being replaced and the descriptor address of the new process, respectively.

What about the third parameter, | ast ? Well, in any process switch three processes are involved, not
just two. Suppose the kernel decides to switch off process A and to activate process B. In the
schedul e() function, prev points to A's descriptor and next points to B's descriptor. As soon as the
swi t ch_t o macro deactivates A, the execution flow of A freezes.

Later, when the kernel wants to reactivate A, it must switch off another process C (in general, this is
different from B) by executing another swi t ch_t o macro with prev pointing to C and next pointing to
A. When A resumes its execution flow, it finds its old Kernel Mode stack, so the prev local variable
points to A's descriptor and next points to B's descriptor. The scheduler, which is now executing on
behalf of process A, has lost any reference to C. This reference, however, turns out to be useful to
complete the process switching (see Chapter 7 for more details).

The last parameter of the swi tch_t o macro is an output parameter that specifies a memory location
in which the macro writes the descriptor address of process C (of course, this is done after A
resumes its execution). Before the process switching, the macro saves in the eax CPU register the
content of the variable identified by the first input parameter pr evthat is, the prev local variable
allocated on the Kernel Mode stack of A. After the process switching, when A has resumed its
execution, the macro writes the content of the eax CPU register in the memory location of A
identified by the third output parameter | ast . Because the CPU register doesn't change across the
process switch, this memory location receives the address of C's descriptor. In the current
implementation of schedul e(), the last parameter identifies the prev local variable of A, so prev is
overwritten with the address of C.

The contents of the Kernel Mode stacks of processes A, B, and C are shown in Figure 3-7, together
with the values of the eax register; be warned that the figure shows the value of the prev local
variable before its value is overwritten with the contents of the eax register.

Figure 3-7. Preserving the reference to process C across a process switch

switch_to(A,B,A) switch_to(C,A,C)
Process A ssB Process C A
Process stack prev=A prey =1
next= R mext = A
faN reqister A
g

The swi t ch_t o macro is coded in extended inline assembly language that makes for rather complex
reading: in fact, the code refers to registers by means of a special positional notation that allows the
compiler to freely choose the general-purpose registers to be used. Rather than follow the
cumbersome extended inline assembly language, we'll describe what the swi t ch_t o macro typically
does on an 80x86 microprocessor by using standard assembly language:

1. Saves the values of prev and next in the eax and edx registers, respectively:

novl prev, % ax
novl next, %edx

2. Saves the contents of the ef | ags and ebp registers in the prev Kernel Mode stack. They must be
saved because the compiler assumes that they will stay unchanged until the end of switch_to:

pushf |
pushl %ebp

3. Saves the content of esp in prev- >t hread. esp so that the field points to the top of the prev
Kernel Mode stack:

novl %esp, 484(Yeax)

The 484(%eax) operand identifies the memory cell whose address is the contents of eax plus
484.

4. Loads next - >t hread. esp in esp. From now on, the kernel operates on the Kernel Mode stack of
next, so this instruction performs the actual process switch from prev to next . Because the
address of a process descriptor is closely related to that of the Kernel Mode stack (as explained
in the section "ldentifying a Process™ earlier in this chapter), changing the kernel stack means
changing the current process:

novl 484(%dx), %esp

5. Saves the address labeled 1 (shown later in this section) in prev- >t hread. ei p. When the
process being replaced resumes its execution, the process executes the instruction labeled as
1:

movl $1f, 480(%eax)

6. On the Kernel Mode stack of next , the macro pushes the next - >t hr ead. ei p value, which, in
most cases, is the address labeled as 1:

pushl 480(%dx)
7. Jumps to the _ _switch_to() C function (see next):
jmp _ _switch_to

8. Here process A that was replaced by B gets the CPU again: it executes a few instructions that
restore the contents of the ef | ags and ebp registers. The first of these two instructions is

labeled as 1:
1:
popl %ebp
popf |

Notice how these pop instructions refer to the kernel stack of the prev process. They will be
executed when the scheduler selects prev as the new process to be executed on the CPU, thus
invoking swi t ch_t o with prev as the second parameter. Therefore, the esp register points to the
prev's Kernel Mode stack.

9. Copies the content of the eax register (loaded in step 1 above) into the memory location
identified by the third parameter | ast of the switch_t o macro:

movl %sax, | ast

As discussed earlier, the eax register points to the descriptor of the process that has just been
replaced.*1

[*1 As stated earlier in this section, the current implementation of the schedul e() function reuses the prev
local variable, so that the assembly language instruction looks like movl %ax, prev.

3.3.3.2. The _ _switch_to () function

The _ _switch_to() function does the bulk of the process switch started by the switch_to()
macro. It acts on the prev_p and next _p parameters that denote the former process and the new
process. This function call is different from the average function call, though, because _ _switch_t o
) takes the prev_p and next _p parameters from the eax and edx registers (where we saw they were
stored), not from the stack like most functions. To force the function to go to the registers for its
parameters, the kernel uses the _ _attribute_ _ and r egpar mkeywords, which are nonstandard
extensions of the C language implemented by the gcc compiler. The _ _switch_to() function is
declared in the include /asm-i386 /system.h header file as follows:

_ _switch_to(struct task_struct *prev_p,
struct task_struct *next_p)
_ _attribute_ (regparm(3));

The steps performed by the function are the following:

1. Executes the code yielded by the _ _unlazy_fpu() macro (see the section "Saving and Loading
the FPU , MMX, and XMM Regqisters" later in this chapter) to optionally save the contents of the
FPU, MMX, and XMM registers of the prev_p process.

_ _unlazy_fpu(prev_p);

2. Executes the snp_processor_id() macro to get the index of the local CPU , namely the CPU
that executes the code. The macro gets the index from the cpu field of the t HRead_i nf o
structure of the current process and stores it into the cpu local variable.

3. Loads next_p->t hread. esp0 in the esp0 field of the TSS relative to the local CPU; as we'll see in
the section "Issuing a System Call via the sysenter Instruction " in Chapter 10, any future
privilege level change from User Mode to Kernel Mode raised by a sysent er assembly
instruction will copy this address in the esp register:

init_tss[cpu].esp0 = next_p->thread. espO;

4. Loads in the Global Descriptor Table of the local CPU the Thread-Local Storage (TLS) segments
used by the next _p process; the three Segment Selectors are stored in the tls_array array
inside the process descriptor (see the section "Segmentation in Linux" in Chapter 2).

cpu_gdt _table[cpu][6] = next_p->thread.tls_array[0];
cpu_gdt _tabl e[cpu] [7] next _p->thread.tls_array[1];
cpu_gdt _tabl e[cpu] [8] next _p->thread.tls_array[2];

5. Stores the contents of the f s and gs segmentation registers in prev_p->t hread. fs and prev_p-
>t hr ead. gs, respectively; the corresponding assembly language instructions are:

novl % s, 40(%esi)
novl %gs, 44(%esi)

The esi register points to the prev_p->t hread structure.

6. If the fs or the gs segmentation register have been used either by the prev_p or by the next _p
process (i.e., if they have a nonzero value), loads into these registers the values stored in the
t hread_struct descriptor of the next _p process. This step logically complements the actions
performed in the previous step. The main assembly language instructions are:

nmovl 40(%bx), % s
nmovl 44(%bx), %gs

The ebx register points to the next _p->t hread structure. The code is actually more intricate, as

an exception might be raised by the CPU when it detects an invalid segment register value. The
code takes this possibility into account by adopting a "fix-up"™ approach (see the section
"Dynamic Address Checking: The Fix-up Code" in Chapter 10).

7. Loads six of the dr0,..., dr 7 debug registers 1 with the contents of the next p-
>t hr ead. debugr eg array. This is done only if next _p was using the debug registers when it was
suspended (that is, field next p->t hr ead. debugr eg[7] is not 0). These registers need not be
saved, because the prev_p->t hread. debugr eg array is modified only when a debugger wants to
monitor prev:

[*1 The 80x86 debug registers allow a process to be monitored by the hardware. Up to four breakpoint areas
may be defined. Whenever a monitored process issues a linear address included in one of the breakpoint
areas, an exception occurs.

i f (next_p->thread. debugreg[7]){
| oaddebug(&ext _p->t hread, 0);
| oaddebug(&ext _p->thread, 1);
| oaddebug(&ext _p->t hread, 2);
| oaddebug(&ext _p->t hread, 3);
/* no 4 and 5 */
| oaddebug(&ext _p->t hread, 6);
| oaddebug(&ext _p->thread, 7);

8. Updates the I/0 bitmap in the TSS, if necessary. This must be done when either next _p or
prev_p has its own customized 1/0 Permission Bitmap:

if (prev_p->thread.io_bitmap_ptr || next_p->thread.io_bitmap_ptr)
handl e_i o_bi t map(&next _p->thread, & nit_tss[cpu]);

Because processes seldom modify the 1/0 Permission Bitmap, this bitmap is handled in a "lazy"
mode: the actual bitmap is copied into the TSS of the local CPU only if a process actually
accesses an 1/0 port in the current timeslice. The customized 1I/0 Permission Bitmap of a
process is stored in a buffer pointed to by the i o_bi t map_ptr field of the t HRead_i nf o structure.
The handl e_i o_bi tmap() function sets up the i o_bit map field of the TSS used by the local CPU
for the next _p process as follows:

o If the next _p process does not have its own customized 1I/0 Permission Bitmap, the
i o_bitmap field of the TSS is set to the value 0x8000.

o If the next _p process has its own customized I/0 Permission Bitmap, the i o_bi t map field
of the TSS is set to the value 0x9000.

The i o_bi t map field of the TSS should contain an offset inside the TSS where the actual bitmap
is stored. The 0x8000 and 0x9000 values point outside of the TSS limit and will thus cause a
"General protection " exception whenever the User Mode process attempts to access an 1/0
port (see the section "Exceptions" in Chapter 4). The do_general _protection() exception
handler will check the value stored in the i o_bi t map field: if it is 0x8000, the function sends a
S| GSEGV signal to the User Mode process; otherwise, if it is 0x9000, the function copies the
process bitmap (pointed to by the i o_bi t map_ptr field in the t HRead_i nf o structure) in the TSS
of the local CPU, sets the i o_bi t map field to the actual bitmap offset (104), and forces a new
execution of the faulty assembly language instruction.

9. Terminates. The _ _switch_to() C function ends by means of the statement:

return prev_p;

The corresponding assembly language instructions generated by the compiler are:

movl %di , Yeax
ret

The prev_p parameter (now in edi) is copied into eax, because by default the return value of
any C function is passed in the eax register. Notice that the value of eax is thus preserved
across the invocation of _ _switch_to(); this is quite important, because the invoking

swi t ch_t o macro assumes that eax always stores the address of the process descriptor being
replaced.

The ret assembly language instruction loads the ei p program counter with the return address
stored on top of the stack. However, the _ _switch_to() function has been invoked simply by
jumping into it. Therefore, the ret instruction finds on the stack the address of the instruction
labeled as 1, which was pushed by the swi t ch_t o macro. If next _p was never suspended before
because it is being executed for the first time, the function finds the starting address of the
ret_fromfork() function (see the section "The clone(), fork(), and vfork() System Calls"
later in this chapter).

3.3.4. Saving and Loading the FPU, MMX, and XMM Registers

Starting with the Intel 80486DX, the arithmetic floating-point unit (FPU) has been integrated into
the CPU. The name mathematical coprocessor continues to be used in memory of the days when
floating-point computations were executed by an expensive special-purpose chip. To maintain
compatibility with older models, however, floating-point arithmetic functions are performed with
ESCAPE instructions , which are instructions with a prefix byte ranging between 0xd8 and 0Oxdf .
These instructions act on the set of floating-point registers included in the CPU. Clearly, if a process
is using ESCAPE instructions, the contents of the floating-point registers belong to its hardware
context and should be saved.

In later Pentium models, Intel introduced a new set of assembly language instructions into its
microprocessors. They are called MMX instructions and are supposed to speed up the execution of
multimedia applications. MMX instructions act on the floating-point registers of the FPU. The obvious
disadvantage of this architectural choice is that programmers cannot mix floating-point instructions
and MMX instructions. The advantage is that operating system designers can ignore the new
instruction set, because the same facility of the task-switching code for saving the state of the
floating-point unit can also be relied upon to save the MMX state.

MMX instructions speed up multimedia applications, because they introduce a single-instruction
multiple-data (SIMD) pipeline inside the processor. The Pentium Ill model extends that SIMD
capability: it introduces the SSE extensions (Streaming SIMD Extensions), which adds facilities for
handling floating-point values contained in eight 128-bit registers called the XMM registers . Such
registers do not overlap with the FPU and MMX registers , so SSE and FPU/MMX instructions may be
freely mixed. The Pentium 4 model introduces yet another feature: the SSE2 extensions, which is
basically an extension of SSE supporting higher-precision floating-point values. SSE2 uses the same
set of XMM registers as SSE.

The 80x86 microprocessors do not automatically save the FPU, MMX, and XMM registers in the TSS.
However, they include some hardware support that enables kernels to save these registers only
when needed. The hardware support consists of a TS (Task-Switching) flag in the cr 0 register, which
obeys the following rules:

e Every time a hardware context switch is performed, the TS flag is set.

e Every time an ESCAPE, MMX, SSE, or SSE2 instruction is executed when the TS flag is set, the
control unit raises a "Device not available " exception (see Chapter 4).

The TS flag allows the kernel to save and restore the FPU, MMX, and XMM registers only when really
needed. To illustrate how it works, suppose that a process A is using the mathematical coprocessor.
When a context switch occurs from A to B, the kernel sets the TS flag and saves the floating-point
registers into the TSS of process A. If the new process B does not use the mathematical coprocessor,
the kernel won't need to restore the contents of the floating-point registers. But as soon as B tries to
execute an ESCAPE or MMX instruction, the CPU raises a "Device not available” exception, and the
corresponding handler loads the floating-point registers with the values saved in the TSS of process
B.

Let's now describe the data structures introduced to handle selective loading of the FPU, MMX, and

XMM registers. They are stored in the t hread. i 387 subfield of the process descriptor, whose format
is described by the i 387_uni on union:

uni on i387_union {

struct i387_fsave_struct fsave;
struct i387_fxsave_struct f xsave;
struct i1387_soft_struct soft;

}s

As you see, the field may store just one of three different types of data structures. The

i 387_soft_struct type is used by CPU models without a mathematical coprocessor; the Linux kernel
still supports these old chips by emulating the coprocessor via software. We don't discuss this legacy
case further, however. The i 387_f save_struct type is used by CPU models with a mathematical
coprocessor and, optionally, an MMX unit. Finally, the i 387_f xsave_struct type is used by CPU
models featuring SSE and SSE2 extensions.

The process descriptor includes two additional flags:

e The TS_USEDFPU flag, which is included in the st at us field of the t hr ead_i nf o descriptor. It
specifies whether the process used the FPU, MMX, or XMM registers in the current execution
run.

e The PF_USED MATH flag, which is included in the fl ags field of the t ask_struct descriptor. This
flag specifies whether the contents of the t hread. i 387 subfield are significant. The flag is
cleared (not significant) in two cases, shown in the following list.

o When the process starts executing a new program by invoking an execve() system call
(see Chapter 20). Because control will never return to the former program, the data
currently stored in t hread. i 387 is never used again.

o When a process that was executing a program in User Mode starts executing a signal
handler procedure (see Chapter 11). Because signal handlers are asynchronous with
respect to the program execution flow, the floating-point registers could be meaningless
to the signal handler. However, the kernel saves the floating-point registers in
t hread. i 387 before starting the handler and restores them after the handler terminates.
Therefore, a signal handler is allowed to use the mathematical coprocessor.

3.3.4.1. Saving the FPU registers

As stated earlier, the _ _switch_to() function executes the _ _unl azy_f pu macro, passing the
process descriptor of the prev process being replaced as an argument. The macro checks the value
of the TS _USEDFPU flags of prev. If the flag is set, prev has used an FPU, MMX, SSE, or SSE2

instructions; therefore, the kernel must save the relative hardware context:

if (prev->thread_info->status & TS USEDFPU)
save_init_fpu(prev);

The save_init _fpu() function, in turn, executes essentially the following operations:

1. Dumps the contents of the FPU registers in the process descriptor of prev and then reinitializes
the FPU. If the CPU uses SSE/SSE2 extensions, it also dumps the contents of the XMM registers
and reinitializes the SSE/SSE2 unit. A couple of powerful extended inline assembly language
instructions take care of everything, either:

asm vol atile("fxsave
% ; fnclex"
"=ni' (prev->thread.i387.fxsave));

if the CPU uses SSE/SSE2 extensions, or otherwise:

asm vol atil e("fnsave
% ; fwait"
"=m" (prev->thread.i387.fsave));

2. Resets the TS_USEDFPU flag of prev:

prev->thread_ i nfo->status &= ~TS_USEDFPU;

3. Sets the CW flag of cr0 by means of the stts() macro, which in practice yields assembly
language instructions like the following:

movl %r0, %eax
orl $8, %eax
nmovl %esax, %r0

3.3.4.2. Loading the FPU registers

The contents of the floating-point registers are not restored right after the next process resumes
execution. However, the TS flag of cr 0 has been set by _ _unl azy_fpu(). Thus, the first time the
next process tries to execute an ESCAPE, MMX, or SSE/SSE2 instruction, the control unit raises a
"Device not available™ exception, and the kernel (more precisely, the exception handler involved by
the exception) runs the mat h_state_restore() function. The next process is identified by this
handler as current.

void math_state restore()

{

asmvolatile ("clts"); /* clear the TS flag of cr0 */
if (!(current->flags & PF_USED NATH))

init_fpu(current);
restore_fpu(current);
current->thread. status | = TS_USEDFPU;

The function clears the CW flags of cr 0, so that further FPU, MMX, or SSE/SSE2 instructions
executed by the process won't trigger the "Device not available™ exception. If the contents of the
t hread. i 387 subfield are not significant, i.e., if the PF_USED MATH flag is equal to O, i nit _fpu() is
invoked to reset the t HRead. i 387 subfield and to set the PF_USED_MATH flag of current to 1. The
restore_fpu() function is then invoked to load the FPU registers with the proper values stored in
the t hread. i 387 subfield. To do this, either the f xrst or or the frstor assembly language
instructions are used, depending on whether the CPU supports SSE/SSE2 extensions. Finally,
math_state_restore() sets the TS _USEDFPU flag.

3.3.4.3. Using the FPU, MMX, and SSE/SSE2 units in Kernel Mode

Even the kernel can make use of the FPU, MMX, or SSE/SSE2 units. In doing so, of course, it should
avoid interfering with any computation carried on by the current User Mode process. Therefore:

e Before using the coprocessor, the kernel must invoke ker nel _f pu_begi n(), which essentially
calls save_init_fpu() to save the contents of the registers if the User Mode process used the
FPU (TS_USEDFPU flag), and then resets the TS flag of the cr 0 register.

e After using the coprocessor, the kernel must invoke kernel _f pu_end(), which sets the TS flag
of the cr 0 register.

Later, when the User Mode process executes a coprocessor instruction, the math_state_restore()
function will restore the contents of the registers, just as in process switch handling.

It should be noted, however, that the execution time of kernel _f pu_begi n() is rather large when
the current User Mode process is using the coprocessor, so much as to nullify the speedup obtained
by using the FPU, MMX, or SSE/SSE2 units. As a matter of fact, the kernel uses them only in a few
places, typically when moving or clearing large memory areas or when computing checksum
functions.

=1 NExT

=1

3.4. Creating Processes

Unix operating systems rely heavily on process creation to satisfy user requests. For example, the
shell creates a new process that executes another copy of the shell whenever the user enters a
command.

Traditional Unix systems treat all processes in the same way: resources owned by the parent
process are duplicated in the child process. This approach makes process creation very slow and
inefficient, because it requires copying the entire address space of the parent process. The child
process rarely needs to read or modify all the resources inherited from the parent; in many cases, it
issues an immediate execve() and wipes out the address space that was so carefully copied.

Modern Unix kernels solve this problem by introducing three different mechanisms:

e The Copy On Write technique allows both the parent and the child to read the same physical
pages. Whenever either one tries to write on a physical page, the kernel copies its contents into
a new physical page that is assigned to the writing process. The implementation of this
technique in Linux is fully explained in Chapter 9.

e Lightweight processes allow both the parent and the child to share many per-process kernel
data structures, such as the paging tables (and therefore the entire User Mode address space),
the open file tables, and the signal dispositions.

e The vfork() system call creates a process that shares the memory address space of its parent.
To prevent the parent from overwriting data needed by the child, the parent's execution is
blocked until the child exits or executes a new program. We'll learn more about the vfork()
system call in the following section.

3.4.1. The clone(), fork(), and vfork() System Calls

Lightweight processes are created in Linux by using a function named cl one(), which uses the
following parameters:

fn
Specifies a function to be executed by the new process; when the function returns, the child
terminates. The function returns an integer, which represents the exit code for the child
process.

arg
Points to data passed to the fn() function.

flags

Miscellaneous information. The low byte specifies the signal number to be sent to the parent
process when the child terminates; the SI GCHLD signal is generally selected. The remaining
three bytes encode a group of clone flags, which are shown in Table 3-8.

child_stack

Specifies the User Mode stack pointer to be assigned to the esp register of the child process.
The invoking process (the parent) should always allocate a new stack for the child.

tls

Specifies the address of a data structure that defines a Thread Local Storage segment for the
new lightweight process (see the section "The Linux GDT" in Chapter 2). Meaningful only if the
CLONE_SETTLS flag is set.

ptid

Specifies the address of a User Mode variable of the parent process that will hold the PID of
the new lightweight process. Meaningful only if the CLONE_PARENT_SETTI D flag is set.

ctid

Specifies the address of a User Mode variable of the new lightweight process that will hold the
PID of such process. Meaningful only if the CLONE_CHI LD _SETTI D flag is set.

Flag name
CLONE_VM
CLONE_FS

CLONE_FI LES
CLONE_SI GHAND

CLONE_PTRACE

CLONE_VFORK
CLONE_PARENT

CLONE_THREAD

CLONE_NEVWS

CLONE_SYSVSEM

Table 3-8. Clone flags

Description
Shares the memory descriptor and all Page Tables (see Chapter 9).

Shares the table that identifies the root directory and the current working
directory, as well as the value of the bitmask used to mask the initial file
permissions of a new file (the so-called file umask).

Shares the table that identifies the open files (see Chapter 12).

Shares the tables that identify the signal handlers and the blocked and
pending signals (see Chapter 11). If this flag is true, the CLONE_VM flag must
also be set.

If traced, the parent wants the child to be traced too. Furthermore, the
debugger may want to trace the child on its own; in this case, the kernel
forces the flag to 1.

Set when the system call issued is a vfork() (see later in this section).

Sets the parent of the child (parent and real _parent fields in the process
descriptor) to the parent of the calling process.

Inserts the child into the same thread group of the parent, and forces the
child to share the signal descriptor of the parent. The child's t gi d and
group_Il eader fields are set accordingly. If this flag is true, the

CLONE_SI GHAND flag must also be set.

Set if the clone needs its own namespace, that is, its own view of the
mounted filesystems (see Chapter 12); it is not possible to specify both
CLONE_NEWNS and CLONE_FS.

Shares the System V IPC undoable semaphore operations (see the section
"IPC Semaphores” in Chapter 19).

Flag name Description

Creates a new Thread Local Storage (TLS) segment for the lightweight
CLONE_SETTLS process; the segment is described in the structure pointed to by thetls
parameter.

Writes the PID of the child into the User Mode variable of the parent pointed

CLONE_PARENT_SETTI D)
- - to by the ptid parameter.

CLONE_CHI LD_CLEARTI D When set, the kernel sets up a mechanism to be triggered when the child
process will exit or when it will start executing a new program. In these
cases, the kernel will clear the User Mode variable pointed to by the ctid
parameter and will awaken any process waiting for this event.

CLONE_DETACHED A legacy flag ignored by the kernel.

CLONE_UNTRACED Set by the kernel to override the value of the CLONE_PTRACE flag (used for
disabling tracing of kernel threads ; see the section "Kernel Threads" later
in this chapter).

Writes the PID of the child into the User Mode variable of the child pointed

CLONE_CHI LD_SETTI D)
- - to by the ctid parameter.

CLONE_STOPPED Forces the child to start in the TASK_STOPPED state.

clone() is actually a wrapper function defined in the C library (see the section "POSIX APIs and
System Calls” in Chapter 10), which sets up the stack of the new lightweight process and invokes a
clone() system call hidden to the programmer. The sys_cl one() service routine that implements
the cl one() system call does not have the f n and ar g parameters. In fact, the wrapper function
saves the pointer f n into the child’s stack position corresponding to the return address of the
wrapper function itself; the pointer arg is saved on the child's stack right below f n. When the
wrapper function terminates, the CPU fetches the return address from the stack and executes the
fn(arg) function.

The traditional fork() system call is implemented by Linux as a cl one() system call whose f | ags
parameter specifies both a SI GCHLD signal and all the clone flags cleared, and whose chi | d_st ack
parameter is the current parent stack pointer. Therefore, the parent and child temporarily share the
same User Mode stack. But thanks to the Copy On Write mechanism, they usually get separate
copies of the User Mode stack as soon as one tries to change the stack.

The vfork() system call, introduced in the previous section, is implemented by Linux as a cl one()

system call whose f | ags parameter specifies both a SI GCHLD signal and the flags CLONE_VM and
CLONE_VFORK, and whose chi | d_st ack parameter is equal to the current parent stack pointer.

3.4.1.1. The do_fork() function

The do_fork() function, which handles the cl one(), fork(), and vfork() system calls, acts on
the following parameters:

clone_fl ags
Same as the fl ags parameter of cl one()

stack_start

Same as the chi |l d_st ack parameter of cl one()

regs

Pointer to the values of the general purpose registers saved into the Kernel Mode stack when
switching from User Mode to Kernel Mode (see the section "The do IRQ() function™ in Chapter
4)

stack_si ze

Unused (always set to 0)

parent tidptr, <child_tidptr
Same as the corresponding ptid and cti d parameters of cl one()
do_fork() makes use of an auxiliary function called copy_process() to set up the process

descriptor and any other kernel data structure required for child's execution. Here are the main
steps performed by do_fork():

1. Allocates a new PID for the child by looking in the pi dnmap_array bitmap (see the earlier section
"ldentifying a Process").

2. Checks the ptrace field of the parent (current->ptrace): if it is not zero, the parent process is
being traced by another process, thus do_fork() checks whether the debugger wants to trace
the child on its own (independently of the value of the CLONE_PTRACE flag specified by the
parent); in this case, if the child is not a kernel thread (CLONE_UNTRACED flag cleared), the
function sets the CLONE_PTRACE flag.

3. Invokes copy_process() to make a copy of the process descriptor. If all needed resources are
available, this function returns the address of the t ask_st ruct descriptor just created. This is
the workhorse of the forking procedure, and we will describe it right after do_fork().

4. If either the CLONE_STOPPED flag is set or the child process must be traced, that is, the
PT_PTRACED flag is set in p->ptrace, it sets the state of the child to TASK_STOPPED and adds a
pending SI GSTOP signal to it (see the section "The Role of Signals” in Chapter 11). The state of
the child will remain TASK_STOPPED until another process (presumably the tracing process or the
parent) will revert its state to TASK_RUNNI NG, usually by means of a SI GCONT signal.

5. If the CLONE_STOPPED flag is not set, it invokes the wake_up_new task() function, which
performs the following operations:

a. Adjusts the scheduling parameters of both the parent and the child (see "The Scheduling
Algorithm" in Chapter 7).

b. If the child will run on the same CPU as the parent,[*1 and parent and child do not share
the same set of page tables (CLONE_VM flag cleared), it then forces the child to run before
the parent by inserting it into the parent's runqueue right before the parent. This simple
step yields better performance if the child flushes its address space and executes a new
program right after the forking. If we let the parent run first, the Copy On Write
mechanism would give rise to a series of unnecessary page duplications.

[*1 The parent process might be moved on to another CPU while the kernel forks the new process.

c. Otherwise, if the child will not be run on the same CPU as the parent, or if parent and
child share the same set of page tables (CLONE_VM flag set), it inserts the child in the last
position of the parent's runqueue.

6. If the CLONE_STOPPED flag is set, it puts the child in the TASK_STOPPED state.

7. If the parent process is being traced, it stores the PID of the child in the ptrace_nessage field of
current and invokes ptrace_notify(), which essentially stops the current process and sends a
S| GCHLD signal to its parent. The "grandparent™ of the child is the debugger that is tracing the
parent; the SI GCHLD signal notifies the debugger that current has forked a child, whose PID
can be retrieved by looking into the current->ptrace_nessage field.

8. If the CLONE_VFORK flag is specified, it inserts the parent process in a wait queue and suspends
it until the child releases its memory address space (that is, until the child either terminates or
executes a new program).

9. Terminates by returning the PID of the child.

3.4.1.2. The copy_process() function

The copy_process() function sets up the process descriptor and any other kernel data structure
required for a child's execution. Its parameters are the same as do_fork(), plus the PID of the
child. Here is a description of its most significant steps:

1. Checks whether the flags passed in the cl one_f | ags parameter are compatible. In particular, it
returns an error code in the following cases:

a. Both the flags CLONE_NEWNS and CLONE_FS are set.

b. The CLONE_THREAD flag is set, but the CLONE_SI GHAND flag is cleared (lightweight processes
in the same thread group must share signals).

c. The CLONE_SI GHAND flag is set, but the CLONE_VM flag is cleared (lightweight processes
sharing the signal handlers must also share the memory descriptor).

2. Performs any additional security checks by invoking security_task _create() and, later,
security_task_alloc(). The Linux kernel 2.6 offers hooks for security extensions that enforce
a security model stronger than the one adopted by traditional Unix. See Chapter 20 for details.

3. Invokes dup_task_struct() to get the process descriptor for the child. This function performs
the following actions:

a. Invokes _ _unlazy fpu() on the current process to save, if necessary, the contents of the
FPU, MMX, and SSE/SSE2 registers in the t hread_i nf o structure of the parent. Later,
dup_task_struct() will copy these values in the t hread_i nf o structure of the child.

b. Executesthe alloc_task_struct() macro to get a process descriptor (t ask_struct
structure) for the new process, and stores its address in the t sk local variable.

c. Executes the all oc_t hread_i nfo macro to get a free memory area to store the
t hread_i nf o structure and the Kernel Mode stack of the new process, and saves its
address in the ti local variable. As explained in the earlier section "ldentifying a Process,"
the size of this memory area is either 8 KB or 4 KB.

d. Copies the contents of the current's process descriptor into the t ask_struct structure
pointed to by t sk, then sets tsk->thread_infototi.

e. Copies the contents of the current's t hread_i nf o descriptor into the structure pointed to
by ti, then setsti->task totsk.

10.

11.

12.

13.

f. Sets the usage counter of the new process descriptor (t sk->usage) to 2 to specify that the
process descriptor is in use and that the corresponding process is alive (its state is not
EXI T_ZOMBI E or EXI T_DEAD).

g. Returns the process descriptor pointer of the new process (t sk).

Checks whether the value stored in current->signal ->rlinfRLIMT_NPROC].rlimcur is smaller
than or equal to the current number of processes owned by the user. If so, an error code is
returned, unless the process has root privileges. The function gets the current number of
processes owned by the user from a per-user data structure named user _struct. This data
structure can be found through a pointer in the user field of the process descriptor.

Increases the usage counter of the user _struct structure (tsk->user->_ _count field) and the
counter of the processes owned by the user (t sk->user - >processes).

Checks that the number of processes in the system (stored in the nr_t hr eads variable) does
not exceed the value of the max_t hr eads variable. The default value of this variable depends on
the amount of RAM in the system. The general rule is that the space taken by all t HRead_i nf o
descriptors and Kernel Mode stacks cannot exceed 1/8 of the physical memory. However, the
system administrator may change this value by writing in the /proc/sys/kernel/threads-max
file.

If the kernel functions implementing the execution domain and the executable format (see
Chapter 20) of the new process are included in kernel modules, it increases their usage
counters (see Appendix B).

Sets a few crucial fields related to the process state:

a. Initializes the big kernel lock counter t sk- >l ock_dept h to - 1 (see the section "The Big
Kernel Lock" in Chapter 5).

b. Initializes the t sk->di d_exec field to O: it counts the number of execve() system calls
issued by the process.

c. Updates some of the flags included in the t sk- >f | ags field that have been copied from the
parent process: first clears the PF_SUPERPRI V flag, which indicates whether the process has
used any of its superuser privileges, then sets the PF_FORKNOEXEC flag, which indicates
that the child has not yet issued an execve() system call.

Stores the PID of the new process in the t sk->pi d field.

If the CLONE_PARENT_SETTI D flag in the cl one_f| ags parameter is set, it copies the child's PID
into the User Mode variable addressed by the parent _tidptr parameter.

Initializes the | i st _head data structures and the spin locks included in the child's process
descriptor, and sets up several other fields related to pending signals, timers, and time
statistics.

Invokes copy_senundo(), copy_files(), copy_fs(), copy_sighand(), copy_signal(),
copy_m(), and copy_nanespace() to create new data structures and copy into them the
values of the corresponding parent process data structures, unless specified differently by the
cl one_f | ags parameter.

Invokes copy_t hread() to initialize the Kernel Mode stack of the child process with the values
contained in the CPU registers when the cl one() system call was issued (these values have
been saved in the Kernel Mode stack of the parent, as described in Chapter 10). However, the
function forces the value O into the field corresponding to the eax register (this is the child's
return value of the fork() or cl one() system call). The t HRead. esp field in the descriptor of
the child process is initialized with the base address of the child's Kernel Mode stack, and the
address of an assembly language function (ret _from fork()) is stored in the t hread. ei p field.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

If the parent process makes use of an 1/0 Permission Bitmap, the child gets a copy of such
bitmap. Finally, if the CLONE_SETTLS flag is set, the child gets the TLS segment specified by the
User Mode data structure pointed to by the t| s parameter of the cl one() system call.X1

[*1 A careful reader might wonder how copy_t hread() gets the value of the t1 s parameter of cl one(),
because t1s is not passed to do_fork() and nested functions. As we'll see in Chapter 10, the parameters of

the system calls are usually passed to the kernel by copying their values into some CPU register; thus, these
values are saved in the Kernel Mode stack together with the other registers. The copy_t hread() function
just looks at the address saved in the Kernel Mode stack location corresponding to the value of esi .

If either CLONE_CHI LD SETTI D or CLONE_CHI LD_CLEARTI D is set in the cl one_f | ags parameter, it
copies the value of the chi | d_ti dptr parameter in the t sk- >set _chid_tid or tsk-

>cl ear_child_tid field, respectively. These flags specify that the value of the variable pointed
to by child_tidptr in the User Mode address space of the child has to be changed, although
the actual write operations will be done later.

Turns off the TI F_SYSCALL_TRACE flag in the t HRead_i nf o structure of the child, so that the
ret_fromfork() function will not notify the debugging process about the system call
termination (see the section "Entering and Exiting a System Call" in Chapter 10). (The system
call tracing of the child is not disabled, because it is controlled by the PTRACE_SYSCALL flag in

t sk->ptrace.)

Initializes the t sk->exit _si gnal field with the signal number encoded in the low bits of the

cl one_f | ags parameter, unless the CLONE_THREAD flag is set, in which case initializes the field to
-1. As we'll see in the section "Process Termination" later in this chapter, only the death of the
last member of a thread group (usually, the thread group leader) causes a signal notifying the
parent of the thread group leader.

Invokes sched_fork() to complete the initialization of the scheduler data structure of the new
process. The function also sets the state of the new process to TASK_RUNNI NG and sets the
preenpt _count field of the t HRead_i nf o structure to 1, thus disabling kernel preemption (see
the section "Kernel Preemption” in Chapter 5). Moreover, in order to keep process scheduling
fair, the function shares the remaining timeslice of the parent between the parent and the child
(see "The scheduler_tick() Function” in Chapter 7).

Sets the cpu field in the t hread_i nf o structure of the new process to the number of the local
CPU returned by snp_processor _id().

Initializes the fields that specify the parenthood relationships. In particular, if CLONE_PARENT or
CLONE_THREAD are set, it initializes t sk->r eal _parent and t sk- >par ent to the value in current -
>r eal _parent ; the parent of the child thus appears as the parent of the current process.
Otherwise, it sets the same fields to current.

If the child does not need to be traced (CLONE_PTRACE flag not set), it sets the t sk->ptrace field
to 0. This field stores a few flags used when a process is being traced by another process. In
such a way, even if the current process is being traced, the child will not.

Executes the SET_LI NKS macro to insert the new process descriptor in the process list.

If the child must be traced (PT_PTRACED flag in the t sk- >pt r ace field set), it sets t sk- >parent to
current->parent and inserts the child into the trace list of the debugger.

Invokes attach_pi d() to insert the PID of the new process descriptor in the
pi dhash[PI DTYPE_PI D] hash table.

If the child is a thread group leader (flag CLONE_THREAD cleared):

a. Initializes t sk->tgi d to t sk->pi d.

b. Initializes t sk->group_I| eader totsk.

c. Invokes three times attach_pi d() to insert the child in the PID hash tables of type
PI DTYPE_TG D, PI DTYPE_PGQ D, and PI DTYPE_SI D.

25. Otherwise, if the child belongs to the thread group of its parent (CLONE_THREAD flag set):

a. Initializes t sk->t gi d to t sk->current->tgid.
b. Initializes t sk- >gr oup_I eader to the value in current->group_| eader.

c. Invokes attach_pid() to insert the child in the PI DTYPE_TG D hash table (more
specifically, in the per-PID list of the current->group_| eader process).

26. A new process has now been added to the set of processes: increases the value of the
nr_t hreads variable.

27. Increases the total _forks variable to keep track of the number of forked processes.
28. Terminates by returning the child's process descriptor pointer (t sk).

Let's go back to what happens after do_f ork() terminates. Now we have a complete child process in
the runnable state. But it isn't actually running. It is up to the scheduler to decide when to give the
CPU to this child. At some future process switch, the schedule bestows this favor on the child process
by loading a few CPU registers with the values of the t hr ead field of the child's process descriptor. In
particular, esp is loaded with t hr ead. esp (that is, with the address of child's Kernel Mode stack), and
ei p is loaded with the address of ret _from fork(). This assembly language function invokes the
schedul e_tail () function (which in turn invokes the fini sh_task_swi tch() function to complete
the process switch; see the section "The schedule() Function" in Chapter 7), reloads all other
registers with the values stored in the stack, and forces the CPU back to User Mode. The new process
then starts its execution right at the end of the fork(), vfork(), orclone() system call. The
value returned by the system call is contained in eax: the value is O for the child and equal to the
PID for the child's parent. To understand how this is done, look back at what copy_t hread() does on
the eax register of the child's process (step 13 of copy_process()).

The child process executes the same code as the parent, except that the fork returns a 0 (see step
13 of copy_process()). The developer of the application can exploit this fact, in a manner familiar
to Unix programmers, by inserting a conditional statement in the program based on the PID value
that forces the child to behave differently from the parent process.

3.4.2. Kernel Threads

Traditional Unix systems delegate some critical tasks to intermittently running processes, including
flushing disk caches, swapping out unused pages, servicing network connections, and so on. Indeed,
it is not efficient to perform these tasks in strict linear fashion; both their functions and the end user
processes get better response if they are scheduled in the background. Because some of the system
processes run only in Kernel Mode, modern operating systems delegate their functions to kernel
threads , which are not encumbered with the unnecessary User Mode context. In Linux, kernel
threads differ from regular processes in the following ways:

¢ Kernel threads run only in Kernel Mode, while regular processes run alternatively in Kernel
Mode and in User Mode.

e Because kernel threads run only in Kernel Mode, they use only linear addresses greater than
PAGE_OFFSET. Regular processes, on the other hand, use all four gigabytes of linear addresses,
in either User Mode or Kernel Mode.

3.4.2.1. Creating a kernel thread

The kernel _thread() function creates a new kernel thread. It receives as parameters the address of
the kernel function to be executed (f n), the argument to be passed to that function (arg), and a set
of clone flags (fI ags). The function essentially invokes do_fork() as follows:

do_fork(flags| CLONE_VM CLONE_UNTRACED, 0, pregs, 0, NULL, NULL);

The CLONE_VWM flag avoids the duplication of the page tables of the calling process: this duplication
would be a waste of time and memory, because the new kernel thread will not access the User Mode
address space anyway. The CLONE_UNTRACED flag ensures that no process will be able to trace the
new kernel thread, even if the calling process is being traced.

The pregs parameter passed to do_fork() corresponds to the address in the Kernel Mode stack
where the copy_t hread() function will find the initial values of the CPU registers for the new thread.
The kernel _thread() function builds up this stack area so that:

e The ebx and edx registers will be set by copy_t hread() to the values of the parameters f n and
arg, respectively.

e The ei p register will be set to the address of the following assembly language fragment:

nmovl %edx, Yeax
pushl %edx

call *%bx
pushl % eax

call do_exit

Therefore, the new kernel thread starts by executing the f n(ar g) function. If this function
terminates, the kernel thread executes the _exit() system call passing to it the return value of f n(
) (see the section "Destroying Processes™ later in this chapter).

3.4.2.2. Process O

The ancestor of all processes, called process 0, the idle process, or, for historical reasons, the
swapper process, is a kernel thread created from scratch during the initialization phase of Linux (see
Appendix A). This ancestor process uses the following statically allocated data structures (data
structures for all other processes are dynamically allocated):

e A process descriptor stored in the i nit _task variable, which is initialized by the | Nl T_TASK
macro.

e Athread_info descriptor and a Kernel Mode stack stored in the i nit _t hread_uni on variable
and initialized by the | NI T_THREAD_ | NFO macro.

e The following tables, which the process descriptor points to:

O init_mm
o init_fs

oinit_files

O init_signals
O init_sighand

The tables are initialized, respectively, by the following macros:

o INIT_MM
o INIT_FS

o INIT_FILES

o I'NI T_SI GNALS
o INI T_SI GHAND

¢ The master kernel Page Global Directory stored in swapper _pg_dir (see the section "Kernel
Page Tables" in Chapter 2).

The start_kernel () function initializes all the data structures needed by the kernel, enables
interrupts, and creates another kernel thread, named process 1 (more commonly referred to as the
init process):

kernel _thread(init, NULL, CLONE_FS| CLONE_SI GHAND) ;

The newly created kernel thread has PID 1 and shares all per-process kernel data structures with
process 0. When selected by the scheduler, the init process starts executing the i nit() function.

After having created the init process, process 0 executes the cpu_idl e() function, which essentially
consists of repeatedly executing the hlt assembly language instruction with the interrupts enabled
(see Chapter 4). Process 0 is selected by the scheduler only when there are no other processes in
the TASK_RUNNI NG state.

In multiprocessor systems there is a process O for each CPU. Right after the power-on, the BIOS of
the computer starts a single CPU while disabling the others. The swapper process running on CPU 0
initializes the kernel data structures, then enables the other CPUs and creates the additional
swapper processes by means of the copy_process() function passing to it the value 0 as the new
PID. Moreover, the kernel sets the cpu field of the t HRead_i nf o descriptor of each forked process to
the proper CPU index.

3.4.2.3. Process 1

The kernel thread created by process O executes the init() function, which in turn completes the
initialization of the kernel. Theninit() invokes the execve() system call to load the executable
program init. As a result, the init kernel thread becomes a regular process having its own per-
process kernel data structure (see Chapter 20). The init process stays alive until the system is shut
down, because it creates and monitors the activity of all processes that implement the outer layers
of the operating system.

3.4.2.4. Other kernel threads

Linux uses many other kernel threads. Some of them are created in the initialization phase and run
until shutdown; others are created "on demand,”" when the kernel must execute a task that is better
performed in its own execution context.

A few examples of kernel threads (besides process O and process 1) are:

keventd (also called events)

Executes the functions in the kevent d_wg workqueue (see Chapter 4).

kapmd

Handles the events related to the Advanced Power Management (APM).

kswapd

Reclaims memory, as described in the section "Periodic Reclaiming" in Chapter 17.

pdflush

Flushes "dirty" buffers to disk to reclaim memory, as described in the section "The pdflush
Kernel Threads" in Chapter 15.

kblockd

Executes the functions in the kbl ockd_wor kqueue workqueue. Essentially, it periodically
activates the block device drivers, as described in the section "Activating the Block Device
Driver" in Chapter 14.

ksoftirqd

Runs the tasklets (see section "Softirgs and Tasklets" in Chapter 4); there is one of these
kernel threads for each CPU in the system.

e prcv NExT

=1

3.5. Destroying Processes

Most processes "die" in the sense that they terminate the execution of the code they were supposed
to run. When this occurs, the kernel must be notified so that it can release the resources owned by
the process; this includes memory, open files, and any other odds and ends that we will encounter in
this book, such as semaphores.

The usual way for a process to terminate is to invoke the exi t() library function, which releases the
resources allocated by the C library, executes each function registered by the programmer, and ends
up invoking a system call that evicts the process from the system. The exit() library function may
be inserted by the programmer explicitly. Additionally, the C compiler always inserts an exit()
function call right after the last statement of the nai n() function.

Alternatively, the kernel may force a whole thread group to die. This typically occurs when a process
in the group has received a signal that it cannot handle or ignore (see Chapter 11) or when an
unrecoverable CPU exception has been raised in Kernel Mode while the kernel was running on behalf
of the process (see Chapter 4).

3.5.1. Process Termination

In Linux 2.6 there are two system calls that terminate a User Mode application:

e The exit_group() system call, which terminates a full thread group, that is, a whole
multithreaded application. The main kernel function that implements this system call is called
do_group_exit(). This is the system call that should be invoked by the exit () C library
function.

e The _exit() system call, which terminates a single process, regardless of any other process in
the thread group of the victim. The main kernel function that implements this system call is
called do_exi t(). This is the system call invoked, for instance, by the pt hread_exit()
function of the LinuxThreads library.

3.5.1.1. The do_group_exit() function

The do_group_exit() function Kills all processes belonging to the thread group of current. It
receives as a parameter the process termination code, which is either a value specified in the
exit_group() system call (normal termination) or an error code supplied by the kernel (abnormal
termination). The function executes the following operations:

1. Checks whether the SI GNAL_GROUP_EXI T flag of the exiting process is not zero, which means
that the kernel already started an exit procedure for this thread group. In this case, it
considers as exit code the value stored in current - >si gnal - >group_exi t_code, and jumps to
step 4.

2. Otherwise, it sets the SI GNAL_GROUP_EXI T flag of the process and stores the termination code in
the current->si gnal - >group_exi t _code field.

3. Invokes the zap_ot her _threads() function to kill the other processes in the thread group of

current, if any. In order to do this, the function scans the per-PID list in the PI DTYPE_TA D hash
table corresponding to current->t gi d; for each process in the list different from current, it
sends a Sl GKI LL signal to it (see Chapter 11). As a result, all such processes will eventually
execute the do_exit() function, and thus they will be killed.

4. Invokes the do_exit() function passing to it the process termination code. As we'll see below,
do_exit() kills the process and never returns.

3.5.1.2. The do_exit() function

All process terminations are handled by the do_exit() function, which removes most references to
the terminating process from kernel data structures. The do_exit() function receives as a
parameter the process termination code and essentially executes the following actions:

1. Sets the PF_EXI TI NG flag in the f1 ag field of the process descriptor to indicate that the process
is being eliminated.

2. Removes, if necessary, the process descriptor from a dynamic timer queue via the
del _timer_sync() function (see Chapter 6).

3. Detaches from the process descriptor the data structures related to paging, semaphores,
filesystem, open file descriptors, namespaces, and 1I/0 Permission Bitmap, respectively, with
theexit_m{),exit_sen(), _ _exit _files(), __exit_fs(), exit_nanespace(), and
exit_thread() functions. These functions also remove each of these data structures if no other
processes are sharing them.

4. If the kernel functions implementing the execution domain and the executable format (see
Chapter 20) of the process being killed are included in kernel modules, the function decreases
their usage counters.

5. Sets the exit_code field of the process descriptor to the process termination code. This value is
either the _exit() orexit_group() system call parameter (normal termination), or an error
code supplied by the kernel (abnormal termination).

6. Invokes the exit_notify() function to perform the following operations:

a. Updates the parenthood relationships of both the parent process and the child processes.
All child processes created by the terminating process become children of another process
in the same thread group, if any is running, or otherwise of the init process.

b. Checks whether the exit _si gnal process descriptor field of the process being terminated
is different from - 1, and whether the process is the last member of its thread group
(notice that these conditions always hold for any normal process; see step 16 in the
description of copy_process() in the earlier section "The clone(), fork(), and vfork()
System Calls"). In this case, the function sends a signal (usually SI GCHLD) to the parent of
the process being terminated to notify the parent about a child's death.

c. Otherwise, if the exit _si gnal field is equal to -1 or the thread group includes other
processes, the function sends a Sl GCHLD signal to the parent only if the process is being
traced (in this case the parent is the debugger, which is thus informed of the death of the
lightweight process).

d. If the exit_signal process descriptor field is equal to - 1 and the process is not being
traced, it sets the exi t _st at e field of the process descriptor to EXI T_DEAD, and invokes
rel ease_task() to reclaim the memory of the remaining process data structures and to
decrease the usage counter of the process descriptor (see the following section). The

usage counter becomes equal to 1 (see step 3f in the copy_process() function), so that
the process descriptor itself is not released right away.

e. Otherwise, if the exit _si gnal process descriptor field is not equal to - 1 or the process is
being traced, it sets the exit_state field to EXI T_zZOwBI E. We'll see what happens to
zombie processes in the following section.

f. Sets the PF_DEAD flag in the f1 ags field of the process descriptor (see the section "The
schedule() Function" in Chapter 7).

7. Invokes the schedul e() function (see Chapter 7) to select a new process to run. Because a
process in an EXI T_ZOMBI E state is ignored by the scheduler, the process stops executing right
after the swit ch_t o macro in schedul e() is invoked. As we'll see in Chapter 7, the scheduler
will check the PF_DEAD flag and will decrease the usage counter in the descriptor of the zombie
process being replaced to denote the fact that the process is no longer alive.

3.5.2. Process Removal

The Unix operating system allows a process to query the kernel to obtain the PID of its parent
process or the execution state of any of its children. A process may, for instance, create a child
process to perform a specific task and then invoke some wai t ()-like library function to check
whether the child has terminated. If the child has terminated, its termination code will tell the
parent process if the task has been carried out successfully.

To comply with these design choices, Unix kernels are not allowed to discard data included in a
process descriptor field right after the process terminates. They are allowed to do so only after the
parent process has issued a wai t () -like system call that refers to the terminated process. This is
why the EXI T_ZOMBI E state has been introduced: although the process is technically dead, its
descriptor must be saved until the parent process is notified.

What happens if parent processes terminate before their children? In such a case, the system could
be flooded with zombie processes whose process descriptors would stay forever in RAM. As
mentioned earlier, this problem is solved by forcing all orphan processes to become children of the
init process. In this way, the init process will destroy the zombies while checking for the termination
of one of its legitimate children through a wai t () -like system call.

The rel ease_task() function detaches the last data structures from the descriptor of a zombie
process; it is applied on a zombie process in two possible ways: by the do_exit() function if the
parent is not interested in receiving signals from the child, or by the wai t4() or waitpid() system
calls after a signal has been sent to the parent. In the latter case, the function also will reclaim the
memory used by the process descriptor, while in the former case the memory reclaiming will be
done by the scheduler (see Chapter 7). This function executes the following steps:

1. Decreases the number of processes belonging to the user owner of the terminated process. This
value is stored in the user _struct structure mentioned earlier in the chapter (see step 4 of

copy_process()).

2. If the process is being traced, the function removes it from the debugger's ptrace_chi |l dren list
and assigns the process back to its original parent.

3. Invokes _ _exit_signal () to cancel any pending signal and to release the si gnal _struct
descriptor of the process. If the descriptor is no longer used by other lightweight processes, the
function also removes this data structure. Moreover, the function invokes exit _itiners() to
detach any POSIX interval timer from the process.

4. Invokes _ _exit_sighand() to get rid of the signal handlers.

5. Invokes _ _unhash_process(), which in turn:

a. Decreases by 1 the nr_t hreads variable.

b. Invokes detach_pid() twice to remove the process descriptor from the pi dhash hash
tables of type PI DTYPE_PI D and PI DTYPE_Td D.

c. If the process is a thread group leader, invokes again det ach_pi d() twice to remove the
process descriptor from the PI DTYPE_PG D and PI DTYPE_SI D hash tables.

d. Uses the REMOVE_LI NKS macro to unlink the process descriptor from the process list.

6. If the process is not a thread group leader, the leader is a zombie, and the process is the last
member of the thread group, the function sends a signal to the parent of the leader to notify it
of the death of the process.

7. Invokes the sched_exit() function to adjust the timeslice of the parent process (this step
logically complements step 17 in the description of copy_process())

8. Invokes put _task_struct() to decrease the process descriptor's usage counter; if the counter
becomes zero, the function drops any remaining reference to the process:

a. Decreases the usage counter (_ _count field) of the user _struct data structure of the user
that owns the process (see step 5 of copy_process()), and releases that data structure if
the usage counter becomes zero.

b. Releases the process descriptor and the memory area used to contain the t HRead_i nf o
descriptor and the Kernel Mode stack.

e prcv NExT

=1

Chapter 4. Interrupts and Exceptions

An interrupt is usually defined as an event that alters the sequence of instructions executed by a
processor. Such events correspond to electrical signals generated by hardware circuits both inside
and outside the CPU chip.

Interrupts are often divided into synchronous and asynchronous interrupts :

e Synchronous interrupts are produced by the CPU control unit while executing instructions and
are called synchronous because the control unit issues them only after terminating the
execution of an instruction.

e Asynchronous interrupts are generated by other hardware devices at arbitrary times with
respect to the CPU clock signals.

Intel microprocessor manuals designate synchronous and asynchronous interrupts as exceptions and
interrupts, respectively. We'll adopt this classification, although we'll occasionally use the term
"interrupt signal” to designate both types together (synchronous as well as asynchronous).

Interrupts are issued by interval timers and 1/0 devices; for instance, the arrival of a keystroke from
a user sets off an interrupt.

Exceptions, on the other hand, are caused either by programming errors or by anomalous conditions
that must be handled by the kernel. In the first case, the kernel handles the exception by delivering
to the current process one of the signals familiar to every Unix programmer. In the second case, the
kernel performs all the steps needed to recover from the anomalous condition, such as a Page Fault
or a requestvia an assembly language instruction such as i nt or sysenter for a kernel service.

We start by describing in the next section the motivation for introducing such signals. We then show
how the well-known IRQs (Interrupt ReQuests) issued by 1/0 devices give rise to interrupts, and we
detail how 80 x 86 processors handle interrupts and exceptions at the hardware level. Then we
illustrate, in the section "Initializing the Interrupt Descriptor Table," how Linux initializes all the data
structures required by the 80x86 interrupt architecture. The remaining three sections describe how
Linux handles interrupt signals at the software level.

One word of caution before moving on: in this chapter, we cover only "“classic" interrupts common to
all PCs; we do not cover the nonstandard interrupts of some architectures.

e rrey NEXT

=1

4.1. The Role of Interrupt Signals

As the name suggests, interrupt signals provide a way to divert the processor to code outside the
normal flow of control. When an interrupt signal arrives, the CPU must stop what it's currently doing
and switch to a new activity; it does this by saving the current value of the program counter (i.e.,
the content of the ei p and cs registers) in the Kernel Mode stack and by placing an address related
to the interrupt type into the program counter.

There are some things in this chapter that will remind you of the context switch described in the
previous chapter, carried out when a kernel substitutes one process for another. But there is a key
difference between interrupt handling and process switching: the code executed by an interrupt or
by an exception handler is not a process. Rather, it is a kernel control path that runs at the expense
of the same process that was running when the interrupt occurred (see the later section "Nested
Execution of Exception and Interrupt Handlers™). As a kernel control path, the interrupt handler is
lighter than a process (it has less context and requires less time to set up or tear down).

Interrupt handling is one of the most sensitive tasks performed by the kernel, because it must
satisfy the following constraints:

e Interrupts can come anytime, when the kernel may want to finish something else it was trying
to do. The kernel's goal is therefore to get the interrupt out of the way as soon as possible and
defer as much processing as it can. For instance, suppose a block of data has arrived on a
network line. When the hardware interrupts the kernel, it could simply mark the presence of
data, give the processor back to whatever was running before, and do the rest of the
processing later (such as moving the data into a buffer where its recipient process can find it,
and then restarting the process). The activities that the kernel needs to perform in response to
an interrupt are thus divided into a critical urgent part that the kernel executes right away and
a deferrable part that is left for later.

e Because interrupts can come anytime, the kernel might be handling one of them while another
one (of a different type) occurs. This should be allowed as much as possible, because it keeps
the 1/0 devices busy (see the later section "Nested Execution of Exception and Interrupt
Handlers™). As a result, the interrupt handlers must be coded so that the corresponding kernel
control paths can be executed in a nested manner. When the last kernel control path
terminates, the kernel must be able to resume execution of the interrupted process or switch to
another process if the interrupt signal has caused a rescheduling activity.

e Although the kernel may accept a new interrupt signal while handling a previous one, some
critical regions exist inside the kernel code where interrupts must be disabled. Such critical
regions must be limited as much as possible because, according to the previous requirement,
the kernel, and particularly the interrupt handlers, should run most of the time with the
interrupts enabled.

o prey NEXT

=1

4.2. Interrupts and Exceptions

The Intel documentation classifies interrupts and exceptions as follows:

e Interrupts:

Maskable interrupts

All Interrupt Requests (IRQs) issued by 1/0 devices give rise to maskable interrupts . A
maskable interrupt can be in two states: masked or unmasked; a masked interrupt is
ignored by the control unit as long as it remains masked.

Nonmaskable interrupts

Only a few critical events (such as hardware failures) give rise to nonmaskable interrupts
. Nonmaskable interrupts are always recognized by the CPU.

e Exceptions:

Processor-detected exceptions

Generated when the CPU detects an anomalous condition while executing an instruction.
These are further divided into three groups, depending on the value of the ei p register
that is saved on the Kernel Mode stack when the CPU control unit raises the exception.

Faults

Can generally be corrected; once corrected, the program is allowed to restart with no
loss of continuity. The saved value of ei p is the address of the instruction that caused the
fault, and hence that instruction can be resumed when the exception handler terminates.
As we'll see in the section "Page Fault Exception Handler™ in Chapter 9, resuming the
same instruction is necessary whenever the handler is able to correct the anomalous
condition that caused the exception.

Traps

Reported immediately following the execution of the trapping instruction; after the kernel
returns control to the program, it is allowed to continue its execution with no loss of
continuity. The saved value of ei p is the address of the instruction that should be
executed after the one that caused the trap. A trap is triggered only when there is no
need to reexecute the instruction that terminated. The main use of traps is for debugging
purposes. The role of the interrupt signal in this case is to notify the debugger that a
specific instruction has been executed (for instance, a breakpoint has been reached
within a program). Once the user has examined the data provided by the debugger, she
may ask that execution of the debugged program resume, starting from the next
instruction.

Aborts

A serious error occurred; the control unit is in trouble, and it may be unable to store in
the ei p register the precise location of the instruction causing the exception. Aborts are
used to report severe errors, such as hardware failures and invalid or inconsistent values
in system tables. The interrupt signal sent by the control unit is an emergency signal
used to switch control to the corresponding abort exception handler. This handler has no
choice but to force the affected process to terminate.

Programmed exceptions

Occur at the request of the programmer. They are triggered by i nt or i nt 3 instructions;
the i nt o (check for overflow) and bound (check on address bound) instructions also give
rise to a programmed exception when the condition they are checking is not true.
Programmed exceptions are handled by the control unit as traps; they are often called
software interrupts . Such exceptions have two common uses: to implement system calls
and to notify a debugger of a specific event (see Chapter 10).

Each interrupt or exception is identified by a number ranging from 0 to 255; Intel calls this 8-bit
unsigned number a vector. The vectors of nonmaskable interrupts and exceptions are fixed, while
those of maskable interrupts can be altered by programming the Interrupt Controller (see the next
section).

4.2.1. IRQs and Interrupts

Each hardware device controller capable of issuing interrupt requests usually has a single output line
designated as the Interrupt ReQuest (IRQ) line.LZ1 All existing IRQ lines are connected to the input
pins of a hardware circuit called the Programmable Interrupt Controller, which performs the
following actions:

[l More sophisticated devices use several IRQ lines. For instance, a PCl card can use up to four IRQ lines.

1. Monitors the IRQ lines, checking for raised signals. If two or more IRQ lines are raised, selects
the one having the lower pin number.

2. If a raised signal occurs on an IRQ line:

a. Converts the raised signal received into a corresponding vector.

b. Stores the vector in an Interrupt Controller 1/0 port, thus allowing the CPU to read it via
the data bus.

c. Sends a raised signal to the processor INTR pinthat is, issues an interrupt.

d. Waits until the CPU acknowledges the interrupt signal by writing into one of the
Programmable Interrupt Controllers (PIC) 1/0 ports; when this occurs, clears the INTR
line.

3. Goes back to step 1.

The IRQ lines are sequentially numbered starting from O; therefore, the first IRQ line is usually
denoted as IRQ 0. Intel's default vector associated with IRQ n is n+32. As mentioned before, the
mapping between IRQs and vectors can be modified by issuing suitable 1/0 instructions to the
Interrupt Controller ports.

Each IRQ line can be selectively disabled. Thus, the PIC can be programmed to disable IRQs. That is,
the PIC can be told to stop issuing interrupts that refer to a given IRQ line, or to resume issuing
them. Disabled interrupts are not lost; the PIC sends them to the CPU as soon as they are enabled
again. This feature is used by most interrupt handlers, because it allows them to process IRQs of the
same type serially.

Selective enabling/disabling of IRQs is not the same as global masking/unmasking of maskable
interrupts. When the | F flag of the ef | ags register is clear, each maskable interrupt issued by the
PIC is temporarily ignored by the CPU. The cli and sti assembly language instructions,
respectively, clear and set that flag.

Traditional PICs are implemented by connecting "in cascade" two 8259A-style external chips. Each
chip can handle up to eight different IRQ input lines. Because the INT output line of the slave PIC is
connected to the IRQ 2 pin of the master PIC, the number of available IRQ lines is limited to 15.

4.2.1.1. The Advanced Programmable Interrupt Controller (APIC)

The previous description refers to PICs designed for uniprocessor systems. If the system includes a
single CPU, the output line of the master PIC can be connected in a straightforward way to the INTR
pin the CPU. However, if the system includes two or more CPUs, this approach is no longer valid and
more sophisticated PICs are needed.

Being able to deliver interrupts to each CPU in the system is crucial for fully exploiting the
parallelism of the SMP architecture. For that reason, Intel introduced starting with Pentium 111 a new
component designated as the 1/0 Advanced Programmable Interrupt Controller (I/0 APIC). This chip
is the advanced version of the old 8259A Programmable Interrupt Controller; to support old
operating systems, recent motherboards include both types of chip. Moreover, all current 80 x 86
microprocessors include a local APIC. Each local APIC has 32-bit registers, an internal clock; a local
timer device; and two additional IRQ lines, LINT O and LINT 1, reserved for local APIC interrupts. All
local APICs are connected to an external 1/0 APIC, giving rise to a multi-APIC system.

Figure 4-1 illustrates in a schematic way the structure of a multi-APIC system. An APIC bus connects
the "frontend"” 1/0 APIC to the local APICs. The IRQ lines coming from the devices are connected to
the 1/0 APIC, which therefore acts as a router with respect to the local APICs. In the motherboards
of the Pentium 11l and earlier processors, the APIC bus was a serial three-line bus; starting with the
Pentium 4, the APIC bus is implemented by means of the system bus. However, because the APIC
bus and its messages are invisible to software, we won't give further details.

Figure 4-1. Multi-APIC system

(PO (PU T

fcal IR (s

fpcal 1RO
(LINTO, LINTT)

{LINTO, LINTT)

: :
Y ¥
Interrupt Controller Communication (1(C) bus
4
v
I/0
APIC

il

extermnal

R

The 1/0 APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection Table, programmable
registers, and a message unit for sending and receiving APIC messages over the APIC bus. Unlike
IRQ pins of the 8259A, interrupt priority is not related to pin number: each entry in the Redirection
Table can be individually programmed to indicate the interrupt vector and priority, the destination
processor, and how the processor is selected. The information in the Redirection Table is used to
translate each external IRQ signal into a message to one or more local APIC units via the APIC bus.

Interrupt requests coming from external hardware devices can be distributed among the available
CPUs in two ways:

Static distribution

The IRQ signal is delivered to the local APICs listed in the corresponding Redirection Table
entry. The interrupt is delivered to one specific CPU, to a subset of CPUs, or to all CPUs at once
(broadcast mode).

Dynamic distribution

The IRQ signal is delivered to the local APIC of the processor that is executing the process with
the lowest priority.

Every local APIC has a programmable task priority register (TPR), which is used to compute
the priority of the currently running process. Intel expects this register to be modified in an
operating system kernel by each process switch.

If two or more CPUs share the lowest priority, the load is distributed between them using a
technique called arbitration . Each CPU is assigned a different arbitration priority ranging from
O (lowest) to 15 (highest) in the arbitration priority register of the local APIC.

Every time an interrupt is delivered to a CPU, its corresponding arbitration priority is
automatically set to O, while the arbitration priority of any other CPU is increased. When the
arbitration priority register becomes greater than 15, it is set to the previous arbitration
priority of the winning CPU increased by 1. Therefore, interrupts are distributed in a round-
robin fashion among CPUs with the same task priority.[*1

[*1 The Pentium 4 local APIC doesn't have an arbitration priority register; the arbitration mechanism is
hidden in the bus arbitration circuitry. The Intel manuals state that if the operating system kernel does not
regularly update the task priority registers , performance may be suboptimal because interrupts might
always be serviced by the same CPU.

Besides distributing interrupts among processors, the multi-APIC system allows CPUs to generate
interprocessor interrupts . When a CPU wishes to send an interrupt to another CPU, it stores the
interrupt vector and the identifier of the target's local APIC in the Interrupt Command Register (ICR)
of its own local APIC. A message is then sent via the APIC bus to the target's local APIC, which
therefore issues a corresponding interrupt to its own CPU.

Interprocessor interrupts (in short, IPIs) are a crucial component of the SMP architecture. They are
actively used by Linux to exchange messages among CPUs (see later in this chapter).

Many of the current uniprocessor systems include an 1/0 APIC chip, which may be configured in two
distinct ways:

e As a standard 8259A-style external PIC connected to the CPU. The local APIC is disabled and
the two LINT O and LINT 1 local IRQ lines are configured, respectively, as the INTR and NMI
pins.

e As a standard external 1/0 APIC. The local APIC is enabled, and all external interrupts are
received through the 1/0 APIC.

4.2.2. Exceptions

The 80x86 microprocessors issue roughly 20 different exceptions .1 The kernel must provide a
dedicated exception handler for each exception type. For some exceptions, the CPU control unit also
generates a hardware error code and pushes it on the Kernel Mode stack before starting the
exception handler.

[l The exact number depends on the processor model.
The following list gives the vector, the name, the type, and a brief description of the exceptions

found in 80x86 processors. Additional information may be found in the Intel technical
documentation.

O - "Divide error" (fault)

Raised when a program issues an integer division by 0.

1- "Debug" (trap or fault)

Raised when the TF flag of ef | ags is set (quite useful to implement single-step execution of a
debugged program) or when the address of an instruction or operand falls within the range of
an active debug register (see the section "Hardware Context” in Chapter 3).

2 - Not used

Reserved for nonmaskable interrupts (those that use the NMI pin).

3 - "Breakpoint” (trap)

Caused by anint 3 (breakpoint) instruction (usually inserted by a debugger).

4 - "Overflow" (trap)

An into (check for overflow) instruction has been executed while the OF (overflow) flag of

()}
1

10

11

12

13

14

15

ef | ags is set.

"Bounds check" (fault)

A bound (check on address bound) instruction is executed with the operand outside of the valid
address bounds.

"Invalid opcode" (fault)
The CPU execution unit has detected an invalid opcode (the part of the machine instruction
that determines the operation performed).

"Device not available" (fault)

An ESCAPE, MMX, or SSE/SSEZ2 instruction has been executed with the TS flag of cr 0 set (see
the section "Saving and Loading the FPU, MMX, and XMM Reqisters" in Chapter 3).

"Double fault" (abort)
Normally, when the CPU detects an exception while trying to call the handler for a prior
exception, the two exceptions can be handled serially. In a few cases, however, the processor
cannot handle them serially, so it raises this exception.

"Coprocessor segment overrun" (abort)
Problems with the external mathematical coprocessor (applies only to old 80386
microprocessors).

- "Invalid TSS" (fault)

The CPU has attempted a context switch to a process having an invalid Task State Segment.

- "Segment not present"” (fault)
A reference was made to a segment not present in memory (one in which the Segnent - Pr esent
flag of the Segment Descriptor was cleared).

- "Stack segment fault" (fault)
The instruction attempted to exceed the stack segment limit, or the segment identified by ss is
not present in memory.

- "General protection” (fault)
One of the protection rules in the protected mode of the 80x86 has been violated.

- "Page Fault" (fault)
The addressed page is not present in memory, the corresponding Page Table entry is null, or a

violation of the paging protection mechanism has occurred.

- Reserved by Intel

16 - "Floating-point error" (fault)

The floating-point unit integrated into the CPU chip has signaled an error condition, such as
numeric overflow or division by 0.I*1

[*1 The 80 x 86 microprocessors also generate this exception when performing a signed division whose
result cannot be stored as a signed integer (for instance, a division between -2,147,483,648 and -1).

17 - "Alignment check" (fault)
The address of an operand is not correctly aligned (for instance, the address of a long integer
is not a multiple of 4).

18 - "Machine check" (abort)

A machine-check mechanism has detected a CPU or bus error.

19 - "SIMD floating point exception” (fault)

The SSE or SSE2 unit integrated in the CPU chip has signaled an error condition on a floating-
point operation.

The values from 20 to 31 are reserved by Intel for future development. As illustrated in Table 4-1,
each exception is handled by a specific exception handler (see the section "Exception Handling" later
in this chapter), which usually sends a Unix signal to the process that caused the exception.

Table 4-1. Signals sent by the exception handlers

Exception Exception handler Signal
0 Divide error divide_error() S| GFPE
1 Debug debug() S| GTRAP
2 NMI nm () None

3 Breakpoint int3() S| GTRAP
4 Overflow overflow) SI GSEGV
5 Bounds check bounds() SI GSEGV
6 Invalid opcode invalid_ op() SI G LL
7 Device not available devi ce_not _avail abl e() None

8 Double fault doubl efault _fn() None

9 Coprocessor segment overrun coprocessor_segnent _overrun() S| GFPE
10 Invalid TSS invalid TSS() SI GSEGV
11 Segment not present segment _not _present() SI GBUS
12 Stack segment fault stack_segnent () S| GBUS
13 General protection general _protection() SI GSEGV
14 Page Fault page_fault() SI GSEGV

15 Intel-reserved None None

EXxception Exception handler Signal

16 Floating-point error coprocessor_error() S| GFPE
17 Alignment check al i gnnent _check() SI GBUS
18 Machine check machi ne_check() None

19 SIMD floating point si md_coprocessor_error() S| GFPE

4.2.3. Interrupt Descriptor Table

A system table called Interrupt Descriptor Table (IDT) associates each interrupt or exception vector
with the address of the corresponding interrupt or exception handler. The IDT must be properly
initialized before the kernel enables interrupts.

The IDT format is similar to that of the GDT and the LDTs examined in Chapter 2. Each entry
corresponds to an interrupt or an exception vector and consists of an 8-byte descriptor. Thus, a
maximum of 256 x 8 = 2048 bytes are required to store the IDT.

The i dtr CPU register allows the IDT to be located anywhere in memory: it specifies both the IDT
base physical address and its limit (maximum length). It must be initialized before enabling
interrupts by using the i dt assembly language instruction.

The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the 64 bits

included in each of them. In particular, the value of the Type field encoded in the bits 4043 identifies
the descriptor type.

Figure 4-2. Gate descriptors’ format

Task Gate Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 3F 37 36 35 34 33 32
D
RESERVED F“ p |n ‘5‘1 |n|1| RESERVED
|

TSS SEGMENT SELECTOR RESERVED

NWHBHTHEBNNW9BITHEHMBI2TI0 %8765 43 2140

Interrupt Gate Descriptor
63 62 61 60 59 58 57 56 55 54 53 52 51 S0 49 48 47 46 45 49 43 42 47 40 39 38 37 36 35 M 33 1
1]
OFFSET {16-31) P‘ P |ﬂ‘1‘1|3|0|ﬂ‘ﬂ|ﬂ‘ RESERVED
|
SEGMENT SELECTOR OFFSET (0-15)

N BT N3N0 BITHEEMBRZIN0 YET ST

Trap Gate Descriptor
63 62 61 60 59 5B 57 56 55 54 53 52 51 S0 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 M4 33 12
0
OFFSET (16-31) P‘ P |D‘1‘1|1|1|0‘ﬂ|0‘ RESERVED
|
SEGMENT SELECTOR OFFSET (0-15)

NwHBATHEBIHMARNWYBITESMBRZIT0O S 8T 65 43 210

The descriptors are:

Task gate
Includes the TSS selector of the process that must replace the current one when an interrupt
signal occurs.

Interrupt gate
Includes the Segment Selector and the offset inside the segment of an interrupt or exception
handler. While transferring control to the proper segment, the processor clears the | F flag,
thus disabling further maskable interrupts.

Trap gate

Similar to an interrupt gate, except that while transferring control to the proper segment, the
processor does not modify the | F flag.

As we'll see in the later section "Interrupt, Trap, and System Gates," Linux uses interrupt gates to
handle interrupts and trap gates to handle exceptions.*1

['1 The "Double fault " exception, which denotes a type of kernel misbehavior, is the only exception handled by means of a task gate (see
the section "Exception Handling" later in this chapter.).

4.2.4. Hardware Handling of Interrupts and Exceptions

We now describe how the CPU control unit handles interrupts and exceptions. We assume that the
kernel has been initialized, and thus the CPU is operating in Protected Mode.

After executing an instruction, the c¢cs and ei p pair of registers contain the logical address of the next
instruction to be executed. Before dealing with that instruction, the control unit checks whether an
interrupt or an exception occurred while the control unit executed the previous instruction. If one
occurred, the control unit does the following:

1. Determines the vector i (O Sis 255) associated with the interrupt or the exception.

2. Reads the i th entry of the IDT referred by the i dtr register (we assume in the following
description that the entry contains an interrupt or a trap gate).

3. Gets the base address of the GDT from the gdtr register and looks in the GDT to read the
Segment Descriptor identified by the selector in the IDT entry. This descriptor specifies the
base address of the segment that includes the interrupt or exception handler.

4. Makes sure the interrupt was issued by an authorized source. First, it compares the Current
Privilege Level (CPL), which is stored in the two least significant bits of the cs register, with the
Descriptor Privilege Level (DPL) of the Segment Descriptor included in the GDT. Raises a
"General protection " exception if the CPL is lower than the DPL, because the interrupt handler
cannot have a lower privilege than the program that caused the interrupt. For programmed
exceptions, makes a further security check: compares the CPL with the DPL of the gate
descriptor included in the IDT and raises a "General protection” exception if the DPL is lower
than the CPL. This last check makes it possible to prevent access by user applications to
specific trap or interrupt gates.

5. Checks whether a change of privilege level is taking place that is, if CPL is different from the
selected Segment Descriptor's DPL. If so, the control unit must start using the stack that is
associated with the new privilege level. It does this by performing the following steps:

a. Reads the t r register to access the TSS segment of the running process.

b. Loads the ss and esp registers with the proper values for the stack segment and stack
pointer associated with the new privilege level. These values are found in the TSS (see the
section "Task State Segment" in Chapter 3).

c. In the new stack, it saves the previous values of ss and esp, which define the logical
address of the stack associated with the old privilege level.

6. If a fault has occurred, it loads cs and ei p with the logical address of the instruction that
caused the exception so that it can be executed again.

7. Saves the contents of efl ags , cs, and ei p in the stack.
8. If the exception carries a hardware error code, it saves it on the stack.

9. Loads cs and ei p, respectively, with the Segment Selector and the Offset fields of the Gate
Descriptor stored in the i th entry of the IDT. These values define the logical address of the first
instruction of the interrupt or exception handler.

The last step performed by the control unit is equivalent to a jump to the interrupt or exception
handler. In other words, the instruction processed by the control unit after dealing with the interrupt
signal is the first instruction of the selected handler.

After the interrupt or exception is processed, the corresponding handler must relinquish control to
the interrupted process by issuing the i ret instruction, which forces the control unit to:

1. Load the cs, ei p, and ef | ags registers with the values saved on the stack. If a hardware error
code has been pushed in the stack on top of the ei p contents, it must be popped before
executingiret.

2. Check whether the CPL of the handler is equal to the value contained in the two least
significant bits of cs (this means the interrupted process was running at the same privilege
level as the handler). If so, i ret concludes execution; otherwise, go to the next step.

3. Load the ss and esp registers from the stack and return to the stack associated with the old
privilege level.

4. Examine the contents of the ds, es, f s, and gs segment registers; if any of them contains a
selector that refers to a Segment Descriptor whose DPL value is lower than CPL, clear the
corresponding segment register. The control unit does this to forbid User Mode programs that
run with a CPL equal to 3 from using segment registers previously used by kernel routines
(with a DPL equal to 0). If these registers were not cleared, malicious User Mode programs
could exploit them in order to access the kernel address space.

e prey NEXT b

=1

4.3. Nested Execution of Exception and Interrupt Handlers

Every interrupt or exception gives rise to a kernel control path or separate sequence of instructions
that execute in Kernel Mode on behalf of the current process. For instance, when an 1/0 device
raises an interrupt, the first instructions of the corresponding kernel control path are those that save
the contents of the CPU registers in the Kernel Mode stack, while the last are those that restore the
contents of the registers.

Kernel control paths may be arbitrarily nested; an interrupt handler may be interrupted by another
interrupt handler, thus giving rise to a nested execution of kernel control paths , as shown in Figure
4-3. As a result, the last instructions of a kernel control path that is taking care of an interrupt do
not always put the current process back into User Mode: if the level of nesting is greater than 1,
these instructions will put into execution the kernel control path that was interrupted last, and the
CPU will continue to run in Kernel Mode.

Figure 4-3. An example of nested execution of kernel control paths

-~

User Mode

+MMMM
IRQj

1 i T -

IR(n it
Kernel Mode

The price to pay for allowing nested kernel control paths is that an interrupt handler must never
block, that is, no process switch can take place until an interrupt handler is running. In fact, all the
data needed to resume a nested kernel control path is stored in the Kernel Mode stack, which is
tightly bound to the current process.

Assuming that the kernel is bug free, most exceptions can occur only while the CPU is in User Mode.
Indeed, they are either caused by programming errors or triggered by debuggers. However, the
"Page Fault " exception may occur in Kernel Mode. This happens when the process attempts to
address a page that belongs to its address space but is not currently in RAM. While handling such an
exception, the kernel may suspend the current process and replace it with another one until the
requested page is available. The kernel control path that handles the "Page Fault" exception
resumes execution as soon as the process gets the processor again.

Because the "Page Fault” exception handler never gives rise to further exceptions, at most two
kernel control paths associated with exceptions (the first one caused by a system call invocation, the
second one caused by a Page Fault) may be stacked, one on top of the other.

In contrast to exceptions, interrupts issued by 1I/0 devices do not refer to data structures specific to
the current process, although the kernel control paths that handle them run on behalf of that
process. As a matter of fact, it is impossible to predict which process will be running when a given
interrupt occurs.

An interrupt handler may preempt both other interrupt handlers and exception handlers.
Conversely, an exception handler never preempts an interrupt handler. The only exception that can
be triggered in Kernel Mode is "Page Fault,” which we just described. But interrupt handlers never
perform operations that can induce page faults, and thus, potentially, a process switch.

Linux interleaves kernel control paths for two major reasons:

e To improve the throughput of programmable interrupt controllers and device controllers.
Assume that a device controller issues a signal on an IRQ line: the PIC transforms it into an
external interrupt, and then both the PIC and the device controller remain blocked until the PIC
receives an acknowledgment from the CPU. Thanks to kernel control path interleaving, the
kernel is able to send the acknowledgment even when it is handling a previous interrupt.

e To implement an interrupt model without priority levels. Because each interrupt handler may
be deferred by another one, there is no need to establish predefined priorities among hardware
devices. This simplifies the kernel code and improves its portability.

On multiprocessor systems, several kernel control paths may execute concurrently. Moreover, a

kernel control path associated with an exception may start executing on a CPU and, due to a process
switch, migrate to another CPU.

o prey NEXT

=1

4.4. Initializing the Interrupt Descriptor Table

Now that we understand what the 80x86 microprocessors do with interrupts and exceptions at the
hardware level, we can move on to describe how the Interrupt Descriptor Table is initialized.

Remember that before the kernel enables the interrupts, it must load the initial address of the IDT
table into the i dtr register and initialize all the entries of that table. This activity is done while
initializing the system (see Appendix A).

The i nt instruction allows a User Mode process to issue an interrupt signal that has an arbitrary
vector ranging from O to 255. Therefore, initialization of the IDT must be done carefully, to block
illegal interrupts and exceptions simulated by User Mode processes via i nt instructions. This can be
achieved by setting the DPL field of the particular Interrupt or Trap Gate Descriptor to O. If the
process attempts to issue one of these interrupt signals, the control unit checks the CPL value
against the DPL field and issues a "General protection ™ exception.

In a few cases, however, a User Mode process must be able to issue a programmed exception. To
allow this, it is sufficient to set the DPL field of the corresponding Interrupt or Trap Gate Descriptors
to 3 that is, as high as possible.

Let's now see how Linux implements this strategy.

4.4.1. Interrupt, Trap, and System Gates

As mentioned in the earlier section "Interrupt Descriptor Table," Intel provides three types of
interrupt descriptors : Task, Interrupt, and Trap Gate Descriptors. Linux uses a slightly different
breakdown and terminology from Intel when classifying the interrupt descriptors included in the
Interrupt Descriptor Table:

Interrupt gate

An Intel interrupt gate that cannot be accessed by a User Mode process (the gate's DPL field is
equal to 0). All Linux interrupt handlers are activated by means of interrupt gates , and all are
restricted to Kernel Mode.

System gate

An Intel trap gate that can be accessed by a User Mode process (the gate's DPL field is equal
to 3). The three Linux exception handlers associated with the vectors 4, 5, and 128 are
activated by means of system gates , so the three assembly language instructions i nto , bound
,and int $0x80 can be issued in User Mode.

System interrupt gate

An Intel interrupt gate that can be accessed by a User Mode process (the gate's DPL field is
equal to 3). The exception handler associated with the vector 3 is activated by means of a
system interrupt gate, so the assembly language instruction i nt 3 can be issued in User Mode.

Trap gate

An Intel trap gate that cannot be accessed by a User Mode process (the gate's DPL field is
equal to 0). Most Linux exception handlers are activated by means of trap gates .

Task gate

An Intel task gate that cannot be accessed by a User Mode process (the gate's DPL field is
equal to 0). The Linux handler for the "Double fault " exception is activated by means of a task
gate.

The following architecture-dependent functions are used to insert gates in the IDT:

set _intr_gate(n, addr)

Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate is set to
the kernel code's Segment Selector. The Offset field is set to addr, which is the address of the
interrupt handler. The DPL field is set to O.

set _system gate(n, addr)

Inserts a trap gate in the n th IDT entry. The Segment Selector inside the gate is set to the
kernel code's Segment Selector. The Offset field is set to addr, which is the address of the
exception handler. The DPL field is set to 3.

set _system.intr_gate(n, addr)

Inserts an interrupt gate in the n th IDT entry. The Segment Selector inside the gate is set to
the kernel code's Segment Selector. The Offset field is set to addr, which is the address of the
exception handler. The DPL field is set to 3.

set _trap_gate(n, addr)

Similar to the previous function, except the DPL field is set to O.

set _task_gate(n, gdt)

Inserts a task gate in the n th IDT entry. The Segment Selector inside the gate stores the
index in the GDT of the TSS containing the function to be activated. The Offset field is set to O,
while the DPL field is set to 3.

4.4.2. Preliminary Initialization of the IDT

The IDT is initialized and used by the BIOS routines while the computer still operates in Real Mode.
Once Linux takes over, however, the IDT is moved to another area of RAM and initialized a second
time, because Linux does not use any BIOS routine (see Appendix A).

The IDT is stored in the i dt _t abl e table, which includes 256 entries. The 6-byte i dt _descr variable
stores both the size of the IDT and its address and is used in the system initialization phase when
the kernel sets up the i dtr register with the | i dt assembly language instruction.*1

[Some old Pentium models have the notorious "fOOf" bug, which allows User Mode programs to freeze the system. When executing on
such CPUs, Linux uses aworkaround based on initializing the i dt r register with afix-mapped read-only linear address pointing to the
actual IDT (see the section "Fix-Mapped Linear Addresses" in Chapter 2).

During kernel initialization, the setup_i dt() assembly language function starts by filling all 256
entries of i dt _t abl e with the same interrupt gate, which refers to the i gnore_int() interrupt

handler:

setup_idt:
|l ea ignore_int, %edx
movl $(_ _KERNEL_CS << 16), %ax
movw %dx, %ax /* selector = 0x0010 = cs */
novw $0x8e00, %ax /* interrupt gate, dpl=0, present */
lea idt_table, %di
nov $256, %ecx
rp_sidt:
novl % ax, (%edi)
nmovl %edx, 4(%edi)
addl $8, %edi
dec %ecx
jne rp_sidt
ret

The ignore_int() interrupt handler, which is in assembly language, may be viewed as a null
handler that executes the following actions:

1. Saves the content of some registers in the stack.

2. Invokes the printk() function to print an "Unknown interrupt” system message.
3. Restores the register contents from the stack.

4. Executes aniret instruction to restart the interrupted program.

The i gnore_int () handler should never be executed. The occurrence of "Unknown interrupt”
messages on the console or in the log files denotes either a hardware problem (an 1/0 device is
issuing unforeseen interrupts) or a kernel problem (an interrupt or exception is not being handled

properly).

Following this preliminary initialization, the kernel makes a second pass in the IDT to replace some
of the null handlers with meaningful trap and interrupt handlers. Once this is done, the IDT includes
a specialized interrupt, trap, or system gate for each different exception issued by the control unit
and for each IRQ recognized by the interrupt controller.

The next two sections illustrate in detail how this is done for exceptions and interrupts.

e prcv NExT

=1

4.5. Exception Handling

Most exceptions issued by the CPU are interpreted by Linux as error conditions. When one of them
occurs, the kernel sends a signal to the process that caused the exception to notify it of an
anomalous condition. If, for instance, a process performs a division by zero, the CPU raises a "Divide
error " exception, and the corresponding exception handler sends a SI GFPE signal to the current
process, which then takes the necessary steps to recover or (if no signal handler is set for that
signal) abort.

There are a couple of cases, however, where Linux exploits CPU exceptions to manage hardware
resources more efficiently. A first case is already described in the section "Saving and Loading the
FPU, MMX, and XMM Registers"” in Chapter 3. The "Device not available " exception is used together
with the TS flag of the cr 0 register to force the kernel to load the floating point registers of the CPU
with new values. A second case involves the "Page Fault " exception, which is used to defer
allocating new page frames to the process until the last possible moment. The corresponding
handler is complex because the exception may, or may not, denote an error condition (see the
section "Page Fault Exception Handler" in Chapter 9).

Exception handlers have a standard structure consisting of three steps:

1. Save the contents of most registers in the Kernel Mode stack (this part is coded in assembly
language).

2. Handle the exception by means of a high-level C function.
3. Exit from the handler by means of the ret _from exception() function.

To take advantage of exceptions, the IDT must be properly initialized with an exception handler
function for each recognized exception. It is the job of the trap_i nit() function to insert the final
valuesthe functions that handle the exceptionsinto all IDT entries that refer to nonmaskable
interrupts and exceptions. This is accomplished through the set _trap_gate(), set_intr_gate(),
set_systemgate(), set_systemintr_gate(), and set_task gate() functions:

set _trap_gate(O0, &i vide_error);

set _trap_gate(1l, &ebug);

set _intr_gate(2, &m);

set _system.intr_gate(3, & nt3);

set _system gat e(4, &verfl ow);

set _syst em gat e(5, &ounds);

set _trap_gate(6, & nvalid_op);

set _trap_gate(7, &evi ce_not _avail abl e);
set _task_gate(8, 31);

set _trap_gate(9, &oprocessor_segment _overrun);
set _trap_gate(10, & nval i d_TSS)

set _trap_gate(1ll, &egnent _not _present);
set _trap_gate(12, &t ack_segnent);

set _trap_gate(13, &general _protection);

set _intr_gate(14, &age_fault);

set _trap_gate(16, &oprocessor_error);

set _trap_gate(17, &l i gnnent _check);

set _trap_gat e(18, &mchi ne_check);

set _trap_gate(19, &si nd_coprocessor_error);

set _system gat e(128, &ystemcall);

The "Double fault” exception is handled by means of a task gate instead of a trap or system gate,
because it denotes a serious kernel misbehavior. Thus, the exception handler that tries to print out
the register values does not trust the current value of the esp register. When such an exception
occurs, the CPU fetches the Task Gate Descriptor stored in the entry at index 8 of the IDT. This
descriptor points to the special TSS segment descriptor stored in the 32 entry of the GDT. Next,
the CPU loads the ei p and esp registers with the values stored in the corresponding TSS segment. As
a result, the processor executes the doubl ef aul t _f n() exception handler on its own private stack.

Now we will look at what a typical exception handler does once it is invoked. Our description of
exception handling will be a bit sketchy for lack of space. In particular we won't be able to cover:

1. The signal codes (see Table 11-8 in Chapter 11) sent by some handlers to the User Mode
processes.

2. Exceptions that occur when the kernel is operating in MS-DOS emulation mode (vm86 mode),
which must be dealt with differently.

3. "Debug " exceptions.

4.5.1. Saving the Registers for the Exception Handler

Let's use handl er _nane to denote the name of a generic exception handler. (The actual names of all
the exception handlers appear on the list of macros in the previous section.) Each exception handler
starts with the following assembly language instructions:

handl er _nane:
pushl $0 /* only for some exceptions */
pushl $do_handl er _nane
jmp error_code

If the control unit is not supposed to automatically insert a hardware error code on the stack when
the exception occurs, the corresponding assembly language fragment includes a pushl $0 instruction
to pad the stack with a null value. Then the address of the high-level C function is pushed on the
stack; its name consists of the exception handler name prefixed by do_.

The assembly language fragment labeled as error_code is the same for all exception handlers except
the one for the "Device not available " exception (see the section "Saving and Loading the FPU,
MMX, and XMM Regqisters" in Chapter 3). The code performs the following steps:

1. Saves the registers that might be used by the high-level C function on the stack.

2. lIssues a cl d instruction to clear the direction flag DF of ef | ags , thus making sure that
autoincreases on the edi and esi registers will be used with string instructions .[*1

[*1 A single assembly language "string instruction,"” such as rep; novsb , is able to act on a whole block of
data (string).

3. Copies the hardware error code saved in the stack at location esp+36 in edx. Stores the value -1
in the same stack location. As we'll see in the section "Reexecution of System Calls" in Chapter
11, this value is used to separate 0x80 exceptions from other exceptions.

4. Loads edi with the address of the high-level do_handl er _nanme() C function saved in the stack
at location esp+32; writes the contents of es in that stack location.

5. Loads in the eax register the current top location of the Kernel Mode stack. This address
identifies the memory cell containing the last register value saved in step 1.

6. Loads the user data Segment Selector into the ds and es registers.
7. Invokes the high-level C function whose address is now stored in edi .

The invoked function receives its arguments from the eax and edx registers rather than from the
stack. We have already run into a function that gets its arguments from the CPU registers: the _
_switch_to() function, discussed in the section "Performing the Process Switch" in Chapter 3.

4.5.2. Entering and Leaving the Exception Handler

As already explained, the names of the C functions that implement exception handlers always
consist of the prefix do_ followed by the handler name. Most of these functions invoke the do_trap()
function to store the hardware error code and the exception vector in the process descriptor of
current, and then send a suitable signal to that process:

current->thread. error_code = error_code;
current->thread.trap_no = vector;
force_sig(sig_nunmber, current);

The current process takes care of the signal right after the termination of the exception handler. The
signal will be handled either in User Mode by the process's own signal handler (if it exists) or in
Kernel Mode. In the latter case, the kernel usually kills the process (see Chapter 11). The signals
sent by the exception handlers are listed in Table 4-1.

The exception handler always checks whether the exception occurred in User Mode or in Kernel Mode
and, in the latter case, whether it was due to an invalid argument passed to a system call. We'll
describe in the section "Dynamic Address Checking: The Fix-up Code" in Chapter 10 how the kernel
defends itself against invalid arguments passed to system calls. Any other exception raised in Kernel
Mode is due to a kernel bug. In this case, the exception handler knows the kernel is misbehaving. In
order to avoid data corruption on the hard disks, the handler invokes the di e() function, which
prints the contents of all CPU registers on the console (this dump is called kernel oops) and
terminates the current process by calling do_exit() (see "Process Termination" in Chapter 3).

When the C function that implements the exception handling terminates, the code performs aj np
instruction to the ret _from exception() function. This function is described in the later section
"Returning from Interrupts and Exceptions."

=1 NExT

=1

4.6. Interrupt Handling

As we explained earlier, most exceptions are handled simply by sending a Unix signal to the process
that caused the exception. The action to be taken is thus deferred until the process receives the
signal; as a result, the kernel is able to process the exception quickly.

This approach does not hold for interrupts, because they frequently arrive long after the process to
which they are related (for instance, a process that requested a data transfer) has been suspended
and a completely unrelated process is running. So it would make no sense to send a Unix signal to
the current process.

Interrupt handling depends on the type of interrupt. For our purposes, we'll distinguish three main
classes of interrupts:

1/0 interrupts

An 1/0 device requires attention; the corresponding interrupt handler must query the device to
determine the proper course of action. We cover this type of interrupt in the later section "1/0
Interrupt Handling."

Timer interrupts

Some timer, either a local APIC timer or an external timer, has issued an interrupt; this kind
of interrupt tells the kernel that a fixed-time interval has elapsed. These interrupts are
handled mostly as 1/0 interrupts; we discuss the peculiar characteristics of timer interrupts in

Chapter 6.

Interprocessor interrupts

A CPU issued an interrupt to another CPU of a multiprocessor system. We cover such
interrupts in the later section "Interprocessor Interrupt Handling."

4.6.1. 1/O Interrupt Handling

In general, an 1/0 interrupt handler must be flexible enough to service several devices at the same
time. In the PCI bus architecture, for instance, several devices may share the same IRQ line. This
means that the interrupt vector alone does not tell the whole story. In the example shown in Table
4-3, the same vector 43 is assigned to the USB port and to the sound card. However, some
hardware devices found in older PC architectures (such as ISA) do not reliably operate if their IRQ
line is shared with other devices.

Interrupt handler flexibility is achieved in two distinct ways, as discussed in the following list.

IRQ sharing

The interrupt handler executes several interrupt service routines (ISRs). Each ISR is a function
related to a single device sharing the IRQ line. Because it is not possible to know in advance

which particular device issued the IRQ, each ISR is executed to verify whether its device needs
attention; if so, the ISR performs all the operations that need to be executed when the device
raises an interrupt.

IRQ dynamic allocation

An IRQ line is associated with a device driver at the last possible moment; for instance, the
IRQ line of the floppy device is allocated only when a user accesses the floppy disk device. In
this way, the same IRQ vector may be used by several hardware devices even if they cannot
share the IRQ line; of course, the hardware devices cannot be used at the same time. (See the
discussion at the end of this section.)

Not all actions to be performed when an interrupt occurs have the same urgency. In fact, the
interrupt handler itself is not a suitable place for all kind of actions. Long noncritical operations
should be deferred, because while an interrupt handler is running, the signals on the corresponding
IRQ line are temporarily ignored. Most important, the process on behalf of which an interrupt
handler is executed must always stay in the TASK_RUNNI NG state, or a system freeze can occur.
Therefore, interrupt handlers cannot perform any blocking procedure such as an 1/0 disk operation.
Linux divides the actions to be performed following an interrupt into three classes:

Critical

Actions such as acknowledging an interrupt to the PIC, reprogramming the PIC or the device
controller, or updating data structures accessed by both the device and the processor. These
can be executed quickly and are critical, because they must be performed as soon as possible.
Critical actions are executed within the interrupt handler immediately, with maskable
interrupts disabled.

Noncritical

Actions such as updating data structures that are accessed only by the processor (for instance,
reading the scan code after a keyboard key has been pushed). These actions can also finish
quickly, so they are executed by the interrupt handler immediately, with the interrupts
enabled.

Noncritical deferrable

Actions such as copying a buffer's contents into the address space of a process (for instance,
sending the keyboard line buffer to the terminal handler process). These may be delayed for a
long time interval without affecting the kernel operations; the interested process will just keep
waiting for the data. Noncritical deferrable actions are performed by means of separate
functions that are discussed in the later section "Softirgs and Tasklets."

Regardless of the kind of circuit that caused the interrupt, all 1/0 interrupt handlers perform the
same four basic actions:

1. Save the IRQ value and the register's contents on the Kernel Mode stack.

2. Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing it to issue
further interrupts.

3. Execute the interrupt service routines (ISRs) associated with all the devices that share the IRQ.
4. Terminate by jumping to the ret_fromintr() address.

Several descriptors are needed to represent both the state of the IRQ lines and the functions to be

executed when an interrupt occurs. Figure 4-4 represents in a schematic way the hardware circuits
and the software functions used to handle an interrupt. These functions are discussed in the
following sections.

4.6.1.1. Interrupt vectors

As illustrated in Table 4-2, physical IRQs may be assigned any vector in the range 32-238. However,
Linux uses vector 128 to implement system calls.

The IBM-compatible PC architecture requires that some devices be statically connected to specific
IRQ lines. In particular:
e The interval timer device must be connected to the IRQ O line (see Chapter 6).

e The slave 8259A PIC must be connected to the IRQ 2 line (although more advanced PICs are
now being used, Linux still supports 8259A-style PICs).

Figure 4-4. 1/0 interrupt handling

HARDWRRE SOFTWARE

fite, t Handler,
Deviee T Deviee 2 il)

1BT1324n]

v

T

PIC

rrrrrrrvrt

1T

intermupt[n]

do_IRQ{n)

Inberruspt service
reetine 1

Intemmupt sepvice
routine 2

e The external mathematical coprocessor must be connected to the IRQ 13 line (although recent
80 x 86 processors no longer use such a device, Linux continues to support the hardy 80386
model).

¢ In general, an 1/0 device can be connected to a limited number of IRQ lines. (As a matter of
fact, when playing with an old PC where IRQ sharing is not possible, you might not succeed in
installing a new card because of IRQ conflicts with other already present hardware devices.)

Table 4-2. Interrupt vectors in Linux

Vector range
019 (0x0-0x13)

2031 (0x14-
0x1f)

32127 (0x20-
ox7f)

128 (0x80)

129238 (0x81-
Oxee)

239 (0xef)
240 (0xf0)

241250 (0xf1-
Oxf a)

251253 (0xf b-
0xf d)

254 (0xf e)

255 (0xff)

Use

Nonmaskable interrupts and exceptions

Intel-reserved

External interrupts (IRQs)
Programmed exception for system calls (see Chapter 10)
External interrupts (IRQs)

Local APIC timer interrupt (see Chapter 6)

Local APIC thermal interrupt (introduced in the Pentium 4 models)
Reserved by Linux for future use

Interprocessor interrupts (see the section "Interprocessor Interrupt Handling"
later in this chapter)

Local APIC error interrupt (generated when the local APIC detects an erroneous
condition)

Local APIC spurious interrupt (generated if the CPU masks an interrupt while the
hardware device raises it)

There are three ways to select a line for an IRQ-configurable device:

e By setting hardware jumpers (only on very old device cards).

e By a utility program shipped with the device and executed when installing it. Such a program
may either ask the user to select an available IRQ number or probe the system to determine an
available number by itself.

e By a hardware protocol executed at system startup. Peripheral devices declare which interrupt
lines they are ready to use; the final values are then negotiated to reduce conflicts as much as
possible. Once this is done, each interrupt handler can read the assigned IRQ by using a
function that accesses some 1/0 ports of the device. For instance, drivers for devices that
comply with the Peripheral Component Interconnect (PCI) standard use a group of functions
such as pci _read_confi g _byte() to access the device configuration space.

Table 4-3 shows a fairly arbitrary arrangement of devices and IRQs, such as those that might be
found on one particular PC.

Table 4-3. An example of IRQ assignment to 1/0 devices

IRQ INT Hardware device

o A W N BB O

32 Timer
33 Keyboard
34 PIC cascading

35 Second serial port
36 First serial port
38 Floppy disk

IRQ INT Hardware device

8 40 System clock

10 42 Network interface

11 43 USB port, sound card

12 44 PS/2 mouse

13 45 Mathematical coprocessor

14 46 EIDE disk controller's first chain
15 47 EIDE disk controller's second chain

The kernel must discover which 1/0 device corresponds to the IRQ number before enabling
interrupts. Otherwise, for example, how could the kernel handle a signal from a SCSI disk without
knowing which vector corresponds to the device? The correspondence is established while initializing
each device driver (see Chapter 13).

4.6.1.2. IRQ data structures

As always, when discussing complicated operations involving state transitions, it helps to understand
first where key data is stored. Thus, this section explains the data structures that support interrupt
handling and how they are laid out in various descriptors. Figure 4-5 illustrates schematically the
relationships between the main descriptors that represent the state of the IRQ lines. (The figure
does not illustrate the data structures needed to handle softirgs and tasklets; they are discussed
later in this chapter.)

Figure 4-5. IRQ descriptors

0 i NR_IR(S-1
irg_dest | | | | | I
hw_irg_controller
:_...-.
- E
irg_desc_t i
handler — Besssssssasssnnsans -
a{tign sewsnan sy
i irgaction irgaction

Y 'S T [
next Iu e u-= next

Every interrupt vector has its own irq_desc_t descriptor, whose fields are listed in Table 4-4. All
such descriptors are grouped together in the i rq_desc array.

Table 4-4. The irq_desc_t descriptor

Field Description
handl er Points to the PIC object (hw_i rg_control | er descriptor) that services the IRQ line.
handl er _dat a Pointer to data used by the PIC methods.

action Identifies the interrupt service routines to be invoked when the IRQ occurs. The
field points to the first element of the list of i rgacti on descriptors associated with
the IRQ. The irqgacti on descriptor is described later in the chapter.

st atus A set of flags describing the IRQ line status (see Table 4-5).

dept h Shows O if the IRQ line is enabled and a positive value if it has been disabled at
least once.

i rq_count Counter of interrupt occurrences on the IRQ line (for diagnostic use only).

. Counter of unhandled interrupt occurrences on the IRQ line (for diagnostic use

i rgs_unhandl ed
only).

| ock A spin lock used to serialize the accesses to the IRQ descriptor and to the PIC (see
Chapter 5).

An interrupt is unexpected if it is not handled by the kernel, that is, either if there is no ISR
associated with the IRQ line, or if no ISR associated with the line recognizes the interrupt as raised
by its own hardware device. Usually the kernel checks the number of unexpected interrupts received
on an IRQ line, so as to disable the line in case a faulty hardware device keeps raising an interrupt
over and over. Because the IRQ line can be shared among several devices, the kernel does not
disable the line as soon as it detects a single unhandled interrupt. Rather, the kernel stores in the

i rg_count andirqgs_unhandl ed fields of the i rq_desc_t descriptor the total number of interrupts and
the number of unexpected interrupts, respectively; when the 100,000t interrupt is raised, the kernel
disables the line if the number of unhandled interrupts is above 99,900 (that is, if less than 101
interrupts over the last 100,000 received are expected interrupts from hardware devices sharing the
line).

The status of an IRQ line is described by the flags listed in Table 4-5.

Table 4-5. Flags describing the IRQ line status

Flag name Description
I RQ_I NPROGRESS A handler for the IRQ is being executed.
I RQ_DI SABLED The IRQ line has been deliberately disabled by a device driver.

An IRQ has occurred on the line; its occurrence has been acknowledged to the PIC,

| RQ_PENDI NG . .
< but it has not yet been serviced by the kernel.

The IRQ line has been disabled but the previous IRQ occurrence has not yet been

| RQ_REPLAY
Qe acknowledged to the PIC.

I RQ_AUTCDETECT The kernel is using the IRQ line while performing a hardware device probe.

The kernel is using the IRQ line while performing a hardware device probe;

I RQ_WAI TI NG . . .

< moreover, the corresponding interrupt has not been raised.
| RQ_LEVEL Not used on the 80 x 86 architecture.
| RQ_MASKED Not used.

| RQ PER_CPU Not used on the 80 x 86 architecture.

The dept h field and the | RQ DI SABLED flag of the i rq_desc_t descriptor specify whether the IRQ line
is enabled or disabled. Every time the disable irq() or disable irqg_nosync() function is invoked,

the dept h field is increased; if dept h is equal to O, the function disables the IRQ line and sets its
| RQ DI SABLED flag.[Z1 Conversely, each invocation of the enabl e_irq() function decreases the field;
if dept h becomes 0, the function enables the IRQ line and clears its | RQ DI SABLED flag.

[TIn contrastto di sabl e_i rq_nosync(), di sabl e_i r q(n) waits until allinterrupt handlers for IRQ n that are running on other
CPUs have completed before returning.

During system initialization, the init_I R) function sets the st at us field of each IRQ main
descriptor to | RQ _DI SABLED. Moreover, init_| R) updates the IDT by replacing the interrupt gates
set up by setup_idt() (see the section "Preliminary Initialization of the IDT," earlier in this
chapter) with new ones. This is accomplished through the following statements:

for (i = 0; i < NRIRQS i++)
if (i+32 = 128)
set_intr_gate(i+32,interrupt[i]);

This code looks in the i nterrupt array to find the interrupt handler addresses that it uses to set up
the interrupt gates . Each entry n of the i nterrupt array stores the address of the interrupt handler
for IRQ n (see the later section "Saving the reqisters for the interrupt handler™). Notice that the
interrupt gate corresponding to vector 128 is left untouched, because it is used for the system call's
programmed exception.

In addition to the 8259A chip that was mentioned near the beginning of this chapter, Linux supports
several other PIC circuits such as the SMP 10-APIC, Intel PIIX4's internal 8259 PIC, and SGI's Visual
Workstation Cobalt (I10-)APIC. To handle all such devices in a uniform way, Linux uses a PIC object,
consisting of the PIC name and seven PIC standard methods. The advantage of this object-oriented
approach is that drivers need not to be aware of the kind of PIC installed in the system. Each driver-
visible interrupt source is transparently wired to the appropriate controller. The data structure that
defines a PIC object is called hw_i nterrupt _type (also called hw_irq_controll er).

For the sake of concreteness, let's assume that our computer is a uniprocessor with two 8259A PICs,
which provide 16 standard IRQs. In this case, the handl er field in each of the 16 irq_desc_t
descriptors points to the i 8259A irg_t ype variable, which describes the 8259A PIC. This variable is
initialized as follows:

struct hw_interrupt_type i8259A irqg_type = {

.typenane = "XT-PI C",

.Startup = startup_8259A irq,

. shut down = shutdown_8259A irq,
. enabl e = enabl e_8259A irq,
.di sabl e = disable_8259A irq,
.ack = mask_and_ack_8259A,
.end = end_8259A irq,

.set_affinity = NULL
b

The first field in this structure, " XT- PI C', is the PIC name. Next come the pointers to six different
functions used to program the PIC. The first two functions start up and shut down an IRQ line of the
chip, respectively. But in the case of the 8259A chip, these functions coincide with the third and
fourth functions, which enable and disable the line. The nask_and_ack_8259A() function
acknowledges the IRQ received by sending the proper bytes to the 8259A 1/0 ports. The
end_8259A irq() function is invoked when the interrupt handler for the IRQ line terminates. The
last set _affinity method is set to NULL: it is used in multiprocessor systems to declare the "affinity"
of CPUs for specified IRQs that is, which CPUs are enabled to handle specific IRQs.

As described earlier, multiple devices can share a single IRQ. Therefore, the kernel maintains
i rgacti on descriptors (see Figure 4-5 earlier in this chapter), each of which refers to a specific

hardware device and a specific interrupt. The fields included in such descriptor are shown in Table 4-
6, and the flags are shown in Table 4-7.

Table 4-6. Fields of the irgaction descriptor

Field Description

name

handl er Points to the interrupt service routine for an 1/0 device. This is the key field that allows
many devices to share the same IRQ.

f1ags This field includes a few fields that describe the relationships between the IRQ line and
the 1/0 device (see Table 4-7).

mask Not used.

name The name of the 1I/0 device (shown when listing the serviced IRQs by reading the
/proc/interrupts file).

dev_id A private field for the 1/0 device. Typically, it identifies the 1/0 device itself (for instance,
it could be equal to its major and minor numbers; see the section "Device Files" in
Chapter 13), or it points to the device driver's data.

next Points to the next element of a list of i rgacti on descriptors. The elements in the list refer
to hardware devices that share the same IRQ.

irq IRQ line.

dir Points to the descriptor of the /proc/irg/n directory associated with the IRQnN.

Table 4-7. Flags of the irgaction descriptor

Flag name Description

SA | NTERRUPT The handler must execute with interrupts disabled.

SA_SHI RQ The device permits its IRQ line to be shared with other devices.

SA_SAMPLE_RANDOM The device may be considered a source of events that occurs randomly; it can

thus be used by the kernel random number generator. (Users can access this
feature by taking random numbers from the /dev/random and /dev/urandom
device files.)

Finally, the irg_stat array includes NR_CPUS entries, one for every possible CPU in the system. Each
entry of typeirqg_cpustat _t includes a few counters and flags used by the kernel to keep track of
what each CPU is currently doing (see Table 4-8).

Table 4-8. Fields of the irg_cpustat_t structure

Field name Description

Set of flags denoting the pending softirgs (see the section "Softirgs" later in

:sof tirqg_pending this chapter)

idle_tinmestanp Time when the CPU became idle (significant only if the CPU is currently idle)

__nm _count Number of occurrences of NMI interrupts

Field name Description

apic_tinmer_irqgs Number of occurrences of local APIC timer interrupts (see Chapter 6)

4.6.1.3. IRQ distribution in multiprocessor systems

Linux sticks to the Symmetric Multiprocessing model (SMP); this means, essentially, that the kernel
should not have any bias toward one CPU with respect to the others. As a consequence, the kernel
tries to distribute the IRQ signals coming from the hardware devices in a round-robin fashion among
all the CPUs. Therefore, all the CPUs should spend approximately the same fraction of their
execution time servicing 1/0 interrupts.

In the earlier section "The Advanced Programmable Interrupt Controller (APIC)," we said that the
multi-APIC system has sophisticated mechanisms to dynamically distribute the IRQ signals among
the CPUs.

During system bootstrap, the booting CPU executes the setup_| O APIC irqgs() function to initialize
the 1I/0 APIC chip. The 24 entries of the Interrupt Redirection Table of the chip are filled, so that all
IRQ signals from the 1/0 hardware devices can be routed to each CPU in the system according to the
"lowest priority” scheme (see the earlier section "IRQs and Interrupts™). During system bootstrap,
moreover, all CPUs execute the setup_l ocal _API C() function, which takes care of initializing the
local APICs. In particular, the task priority register (TPR) of each chip is initialized to a fixed value,
meaning that the CPU is willing to handle every kind of IRQ signal, regardless of its priority. The
Linux kernel never modifies this value after its initialization.

All task priority registers contain the same value, thus all CPUs always have the same priority. To
break a tie, the multi-APIC system uses the values in the arbitration priority registers of local APICs,
as explained earlier. Because such values are automatically changed after every interrupt, the IRQ
signals are, in most cases, fairly distributed among all CPUs.[*1

[l There is an exception, though. Linux usually sets up the local APICs in such a way to honor the focus processor, when it exists. A
focus process will catch all IRQs of the same type as long as it has received an IRQ of that type, and it has not finished executing the
interrupthandler. However, Intel has dropped support for focus processors in the Pentium 4 model.

In short, when a hardware device raises an IRQ signal, the multi-APIC system selects one of the
CPUs and delivers the signal to the corresponding local APIC, which in turn interrupts its CPU. No
other CPUs are notified of the event.

All this is magically done by the hardware, so it should be of no concern for the kernel after multi-
APIC system initialization. Unfortunately, in some cases the hardware fails to distribute the
interrupts among the microprocessors in a fair way (for instance, some Pentium 4-based SMP
motherboards have this problem). Therefore, Linux 2.6 makes use of a special kernel thread called
kirqd to correct, if necessary, the automatic assignment of IRQs to CPUs.

The kernel thread exploits a nice feature of multi-APIC systems, called the IRQ affinity of a CPU: by
modifying the Interrupt Redirection Table entries of the 1/0 APIC, it is possible to route an interrupt
signal to a specific CPU. This can be done by invoking the set _ioapic_affinity_irq() function,
which acts on two parameters: the IRQ vector to be rerouted and a 32-bit mask denoting the CPUs
that can receive the IRQ. The IRQ affinity of a given interrupt also can be changed by the system
administrator by writing a new CPU bitmap mask into the /proc/irg/n/smp_affinity file (n being the
interrupt vector).

The kirqd kernel thread periodically executes the do_irq_bal ance() function, which keeps track of
the number of interrupt occurrences received by every CPU in the most recent time interval. If the
function discovers that the IRQ load imbalance between the heaviest loaded CPU and the least
loaded CPU is significantly high, then it either selects an IRQ to be "moved" from a CPU to another,
or rotates all IRQs among all existing CPUs.

4.6.1.4. Multiple Kernel Mode stacks

As mentioned in the section "ldentifying a Process" in Chapter 3, the t hread_i nf o descriptor of each
process is coupled with a Kernel Mode stack in a t hr ead_uni on data structure composed by one or
two page frames, according to an option selected when the kernel has been compiled. If the size of
the t HRead_uni on structure is 8 KB, the Kernel Mode stack of the current process is used for every
type of kernel control path: exceptions, interrupts, and deferrable functions (see the later section
"Softirgs and Tasklets"). Conversely, if the size of the t hr ead_uni on structure is 4 KB, the kernel
makes use of three types of Kernel Mode stacks:

e The exception stack is used when handling exceptions (including system calls). This is the stack
contained in the per-process t hr ead_uni on data structure, thus the kernel makes use of a
different exception stack for each process in the system.

e The hard IRQ stack is used when handling interrupts. There is one hard IRQ stack for each CPU
in the system, and each stack is contained in a single page frame.

e The soft IRQ stack is used when handling deferrable functions (softirgs or tasklets; see the later
section "Softirgs and Tasklets™). There is one soft IRQ stack for each CPU in the system, and
each stack is contained in a single page frame.

All hard IRQ stacks are contained in the hardi rq_st ack array, while all soft IRQ stacks are contained
in the softirq_stack array. Each array element is a union of type i rq_ct x that span a single page.
At the bottom of this page is stored at hread_i nf o structure, while the spare memory locations are
used for the stack; remember that each stack grows towards lower addresses. Thus, hard IRQ stacks
and soft IRQ stacks are very similar to the exception stacks described in the section "ldentifying a
Process" in Chapter 3; the only difference is that the t HRead_i nf o structure coupled with each stack
is associated with a CPU rather than a process.

The hardirg_ctx and softirqg_ctx arrays allow the kernel to quickly determine the hard IRQ stack
and soft IRQ stack of a given CPU, respectively: they contain pointers to the corresponding irq_ct x
elements.

4.6.1.5. Saving the registers for the interrupt handler

When a CPU receives an interrupt, it starts executing the code at the address found in the
corresponding gate of the IDT (see the earlier section "Hardware Handling of Interrupts and

Exceptions").

As with other context switches, the need to save registers leaves the kernel developer with a
somewhat messy coding job, because the registers have to be saved and restored using assembly
language code. However, within those operations, the processor is expected to call and return from
a C function. In this section, we describe the assembly language task of handling registers; in the
next, we show some of the acrobatics required in the C function that is subsequently invoked.

Saving registers is the first task of the interrupt handler. As already mentioned, the address of the
interrupt handler for IRQ n is initially stored in the i nterrupt[n] enTRy and then copied into the
interrupt gate included in the proper IDT entry.

The i nterrupt array is built through a few assembly language instructions in the
arch/i386/kernel/entry.S file. The array includes NR_| RQS elements, where the NR_| RQS macro yields
either the number 224 if the kernel supports a recent 1/0 APIC chip,Z1 or the number 16 if the
kernel uses the older 8259A PIC chips. The element at index n in the array stores the address of the
following two assembly language instructions:

['1 256 vectors is an architectural limit for the 80x86 architecture. 32 of them are used or reserved for the CPU, so the usable vector
space consists of 224 vectors.

pushl $n- 256
j mp conmmon_i nt errupt

The result is to save on the stack the IRQ number associated with the interrupt minus 256. The
kernel represents all IRQs through negative numbers, because it reserves positive interrupt numbers
to identify system calls (see Chapter 10). The same code for all interrupt handlers can then be
executed while referring to this number. The common code starts at label conmon_i nt errupt and
consists of the following assembly language macros and instructions:

conmon_i nterrupt:

SAVE_ALL
novl %esp, Yeax
call do_IRQ

jmp ret_fromintr

The SAVE_ALL macro expands to the following fragment:

cld

push %es
push %ls
pushl %eax
pushl % ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx

movl $ _ _USER DS, %edx
movl %dx, %ds
movl %dx, %es

SAVE_ALL saves all the CPU registers that may be used by the interrupt handler on the stack, except
for efl ags , cs, eip, ss, and esp, which are already saved automatically by the control unit (see the
earlier section "Hardware Handling of Interrupts and Exceptions"). The macro then loads the selector
of the user data segment into ds and es.

After saving the registers, the address of the current top stack location is saved in the eax register;
then, the interrupt handler invokes the do_I R) function. When the ret instruction of do_I RQY) is
executed (when that function terminates) control is transferred toret_from.intr() (see the later

section "Returning from Interrupts and Exceptions").

4.6.1.6. The do_IRQ() function

The do_I RQY) function is invoked to execute all interrupt service routines associated with an
interrupt. It is declared as follows:

_ _attribute_ _((regparm(3))) unsigned int do | RQstruct pt_regs *regs)

The r egpar mkeyword instructs the function to go to the eax register to find the value of the regs
argument; as seen above, eax points to the stack location containing the last register value pushed

on by SAVE_ALL.

The do_I RQ) function executes the following actions:

1. Executesthe irqg_enter() macro, which increases a counter representing the number of
nested interrupt handlers. The counter is stored in the preenpt _count field of the t HRead_i nf o
structure of the current process (see Table 4-10 later in this chapter).

2. If the size of the t hr ead_uni on structure is 4 KB, it switches to the hard IRQ stack.In particular,
the function performs the following substeps:

a. Executesthe current_thread_i nfo() function to get the address of the t HRead_i nf o
descriptor associated with the Kernel Mode stack addressed by the esp register (see the
section "ldentifying a Process™ in Chapter 3).

b. Compares the address of the t HRead_i nf o descriptor obtained in the previous step with
the address stored in hardirq_ctx[snp_processor_id()], thatis, the address of the
t hread_i nf o descriptor associated with the local CPU. If the two addresses are equal, the
kernel is already using the hard IRQ stack, thus jumps to step 3. This happens when an
IRQ is raised while the kernel is still handling another interrupt.

c. Here the Kernel Mode stack has to be switched. Stores the pointer to the current process
descriptor in the task field of the t HRead_i nf o descriptor in i rg_ct x union of the local
CPU. This is done so that the current macro works as expected while the kernel is using
the hard IRQ stack (see the section "ldentifying a Process" in Chapter 3).

d. Stores the current value of the esp stack pointer register in the previ ous_esp field of the
t hread_i nf o descriptor in the i rg_ct x union of the local CPU (this field is used only when
preparing the function call trace for a kernel oops).

e. Loads in the esp stack register the top location of the hard IRQ stack of the local CPU (the
value in hardirqg_ctx[snp_processor_id()] plus 4096); the previous value of the esp
register is saved in the ebx register.

3. Invokes the _ do_ IRQY) function passing to it the pointer regs and the IRQ number obtained
from the regs->ori g_eax field (see the following section).

4. If the hard IRQ stack has been effectively switched in step 2e above, the function copies the
original stack pointer from the ebx register into the esp register, thus switching back to the
exception stack or soft IRQ stack that were in use before.

5. Executestheirg_exit() macro, which decreases the interrupt counter and checks whether
deferrable kernel functions are waiting to be executed (see the section "Softirgs and Tasklets"
later in this chapter).

6. Terminates: the control is transferred to theret_from.intr() function (see the later section
"Returning from Interrupts and Exceptions™).

4.6.1.7. The _ _do_IRQ() function

The _ _do I RQY) function receives as its parameters an IRQ number (through the eax register) and
a pointer to the pt _regs structure where the User Mode register values have been saved (through
the edx register).

The function is equivalent to the following code fragment:

spin_lock(&(irq_desc[irq].lock));
irq_desc[irq].handler->ack(irq);
irg_desc[irq].status & ~(IRQ REPLAY | | RQ WAITING;
irq_desc[irq].status |= | RQ PENDI NG
if (!'(irg_desc[irqg].status & (I RQ. DI SABLED | | RQ_|I NPROGRESS))
&% irq_desc[irq].action) {
irqg_desc[irq].status | = | RQ_|I NPROCRESS;
do {
irq_desc[irq].status &= ~I RQ _PENDI NG
spi n_unl ock(&(irqg_desc[irqg].lock));
handl e | RQ event(irq, regs, irqg_desc[irqg].action);
spin_l ock(&(irqg_desc[irq].lock));
} while (irg_desc[irqg].status & | RQ _PENDI NG ;
irg_desc[irqg].status &= ~I RQ_| NPROGRESS;
}
i rg_desc[irq].handler->end(irq);
spi n_unl ock(&(irq_desc[irq].lock));

Before accessing the main IRQ descriptor, the kernel acquires the corresponding spin lock. We'll see
in Chapter 5 that the spin lock protects against concurrent accesses by different CPUs. This spin lock
is necessary in a multiprocessor system, because other interrupts of the same kind may be raised,
and other CPUs might take care of the new interrupt occurrences. Without the spin lock, the main
IRQ descriptor would be accessed concurrently by several CPUs. As we'll see, this situation must be
absolutely avoided.

After acquiring the spin lock, the function invokes the ack method of the main IRQ descriptor. When
using the old 8259A PIC, the corresponding mask_and_ack_8259A() function acknowledges the
interrupt on the PIC and also disables the IRQ line. Masking the IRQ line ensures that the CPU does
not accept further occurrences of this type of interrupt until the handler terminates. Remember that
the _ do_IRQY) function runs with local interrupts disabled; in fact, the CPU control unit
automatically clears the | F flag of the ef | ags register because the interrupt handler is invoked
through an IDT's interrupt gate. However, we'll see shortly that the kernel might re-enable local
interrupts before executing the interrupt service routines of this interrupt.

When using the 1/0 APIC, however, things are much more complicated. Depending on the type of
interrupt, acknowledging the interrupt could either be done by the ack method or delayed until the
interrupt handler terminates (that is, acknowledgement could be done by the end method). In either
case, we can take for granted that the local APIC doesn't accept further interrupts of this type until
the handler terminates, although further occurrences of this type of interrupt may be accepted by
other CPUs.

The _ _do_I RY) function then initializes a few flags of the main IRQ descriptor. It sets the

I RQ_PENDI NG flag because the interrupt has been acknowledged (well, sort of), but not yet really
serviced; it also clears the | RQ_ WAI TI NG and | RQ_REPLAY flags (but we don't have to care about them
now).

Now _ _do_I R) checks whether it must really handle the interrupt. There are three cases in which
nothing has to be done. These are discussed in the following list.

| RQ_DI SABLED is set

A CPU might execute the _ _do_I R) function even if the corresponding IRQ line is disabled;
you'll find an explanation for this nonintuitive case in the later section "Reviving a lost
interrupt.” Moreover, buggy motherboards may generate spurious interrupts even when the
IRQ line is disabled in the PIC.

I RQ_|I NPROGRESS is set

In a multiprocessor system, another CPU might be handling a previous occurrence of the same
interrupt. Why not defer the handling of this occurrence to that CPU? This is exactly what is
done by Linux. This leads to a simpler kernel architecture because device drivers' interrupt
service routines need not to be reentrant (their execution is serialized). Moreover, the freed
CPU can quickly return to what it was doing, without dirtying its hardware cache; this is
beneficial to system performance. The | RQ_| NPROGRESS flag is set whenever a CPU is committed
to execute the interrupt service routines of the interrupt; therefore, the _ _do_I R) function
checks it before starting the real work.

irg_desc[irqg].actionisNULL

This case occurs when there is no interrupt service routine associated with the interrupt.
Normally, this happens only when the kernel is probing a hardware device.

Let's suppose that none of the three cases holds, so the interrupt has to be serviced. The _ _do_I RY
) function sets the | RQ_| NPROGRESS flag and starts a loop. In each iteration, the function clears the

I RQ_PENDI NG flag, releases the interrupt spin lock, and executes the interrupt service routines by
invoking handl e_I RQ event () (described later in the chapter). When the latter function terminates,
_ _do_I RQY) acquires the spin lock again and checks the value of the | RQ PENDI NG flag. If it is clear,
no further occurrence of the interrupt has been delivered to another CPU, so the loop ends.
Conversely, if | RQ_PENDI NG is set, another CPU has executed the do_I R) function for this type of
interrupt while this CPU was executing handl e_I RQ event (). Therefore, do_I| R) performs another
iteration of the loop, servicing the new occurrence of the interrupt.*1

Because | RQ_PENDI NGis a flag and not a counter, only the second occurrence of the interrupt can be recognized. Further
occurrences in each iteration of the do_I RQ() 'sloop are simply lost.

Our _ _do_IRQY) function is now going to terminate, either because it has already executed the
interrupt service routines or because it had nothing to do. The function invokes the end method of
the main IRQ descriptor. When using the old 8259A PIC, the corresponding end_8259A irq()
function reenables the IRQ line (unless the interrupt occurrence was spurious). When using the 170
APIC, the end method acknowledges the interrupt (if not already done by the ack method).

Finally, _ _do_I R) releases the spin lock: the hard work is finished!

4.6.1.8. Reviving a lost interrupt

The _ _do_I RY) function is small and simple, yet it works properly in most cases. Indeed, the

I RQ_PENDI NG, | RQ_| NPROGRESS, and | RQ DI SABLED flags ensure that interrupts are correctly handled
even when the hardware is misbehaving. However, things may not work so smoothly in a
multiprocessor system.

Suppose that a CPU has an IRQ line enabled. A hardware device raises the IRQ line, and the multi-
APIC system selects our CPU for handling the interrupt. Before the CPU acknowledges the interrupt,
the IRQ line is masked out by another CPU; as a consequence, the | RQ DI SABLED flag is set. Right
afterwards, our CPU starts handling the pending interrupt; therefore, the do_I| R) function
acknowledges the interrupt and then returns without executing the interrupt service routines
because it finds the | RQ_DI SABLED flag set. Therefore, even though the interrupt occurred before the
IRQ line was disabled, it gets lost.

To cope with this scenario, the enabl e_irq() function, which is used by the kernel to enable an IRQ
line, checks first whether an interrupt has been lost. If so, the function forces the hardware to
generate a new occurrence of the lost interrupt:

spin_l ock_irqgsave(&(irqg_desc[irq].lock), flags);
if (--irqg_desc[irq].depth == 0) {
irq_desc[irq].status &= ~I RQ DI SABLED;
if (irg_desc[irqg].status & (I RQ_PENDI NG | | RQ REPLAY))

== | RQ_PENDI NG {
irg_desc[irq].status | = | RQ REPLAY,;
hw resend_irq(irqg_desc[irq].handler,irq);
}
irq_desc[irq].handl er->enable(irq);

}
spin_lock _irqrestore(&irqg_desc[irq].lock), flags);

The function detects that an interrupt was lost by checking the value of the | RQ_PENDI NG flag. The
flag is always cleared when leaving the interrupt handler; therefore, if the IRQ line is disabled and
the flag is set, then an interrupt occurrence has been acknowledged but not yet serviced. In this
case the hw resend_irq() function raises a new interrupt. This is obtained by forcing the local APIC
to generate a self-interrupt (see the later section "Interprocessor_Interrupt Handling™). The role of
the | RQ_REPLAY flag is to ensure that exactly one self-interrupt is generated. Remember that the _
_do_I RQ) function clears that flag when it starts handling the interrupt.

4.6.1.9. Interrupt service routines

As mentioned previously, an interrupt service routine handles an interrupt by executing an operation
specific to one type of device. When an interrupt handler must execute the ISRs, it invokes the
handl e_I RQ event () function. This function essentially performs the following steps:

1. Enables the local interrupts with the sti assembly language instruction if the SA_| NTERRUPT flag
is clear.

2. Executes each interrupt service routine of the interrupt through the following code:
retval = 0;
do {
retval | = action->handler(irq, action->dev_id, regs);

action = action->next;
} while (action);

At the start of the loop, acti on points to the start of a list of i rgacti on data structures that
indicate the actions to be taken upon receiving the interrupt (see Figure 4-5 earlier in this
chapter).

3. Disables local interrupts with the cli assembly language instruction.

4. Terminates by returning the value of the retval local variable, that is, O if no interrupt service
routine has recognized interrupt, 1 otherwise (see next).

All interrupt service routines act on the same parameters (once again they are passed through the
eax, edx, and ecx registers, respectively):

The IRQ number

dev_id

The device identifier

regs

A pointer to a pt _r egs structure on the Kernel Mode (exception) stack containing the registers
saved right after the interrupt occurred. The pt _r egs structure consists of 15 fields:

e The first nine fields are the register values pushed by SAVE_ALL
e The tenth field, referenced through a field called ori g_eax, encodes the IRQ number

e The remaining fields correspond to the register values pushed on automatically by the
control unit

The first parameter allows a single ISR to handle several IRQ lines, the second one allows a single
ISR to take care of several devices of the same type, and the last one allows the ISR to access the
execution context of the interrupted kernel control path. In practice, most ISRs do not use these
parameters.

Every interrupt service routine returns the value 1 if the interrupt has been effectively handled, that
is, if the signal was raised by the hardware device handled by the interrupt service routine (and not
by another device sharing the same IRQ); it returns the value O otherwise. This return code allows
the kernel to update the counter of unexpected interrupts mentioned in the section "IRQ data
structures™ earlier in this chapter.

The SA | NTERRUPT flag of the main IRQ descriptor determines whether interrupts must be enabled or
disabled when the do_I R) function invokes an ISR. An ISR that has been invoked with the
interrupts in one state is allowed to put them in the opposite state. In a uniprocessor system, this
can be achieved by means of the cli (disable interrupts) and sti (enable interrupts) assembly
language instructions.

The structure of an ISR depends on the characteristics of the device handled. We'll give a couple of
examples of ISRs in Chapter 6 and Chapter 13.

4.6.1.10. Dynamic allocation of IRQ lines

As noted in section "Interrupt vectors," a few vectors are reserved for specific devices, while the
remaining ones are dynamically handled. There is, therefore, a way in which the same IRQ line can
be used by several hardware devices even if they do not allow IRQ sharing. The trick is to serialize
the activation of the hardware devices so that just one owns the IRQ line at a time.

Before activating a device that is going to use an IRQ line, the corresponding driver invokes
request _irq(). This function creates a new i rgacti on descriptor and initializes it with the
parameter values; it then invokes the setup_irq() function to insert the descriptor in the proper
IRQ list. The device driver aborts the operation if setup_irqg() returns an error code, which usually
means that the IRQ line is already in use by another device that does not allow interrupt sharing.
When the device operation is concluded, the driver invokes the free_irq() function to remove the
descriptor from the IRQ list and release the memory area.

Let's see how this scheme works on a simple example. Assume a program wants to address the
/dev/fd0 device file, which corresponds to the first floppy disk on the system.[*l The program can do
this either by directly accessing /dev/fdO or by mounting a filesystem on it. Floppy disk controllers
are usually assigned IRQ 6; given this, a floppy driver may issue the following request:

[l Floppy disks are "old" devices that do not usually allow IRQ sharing.

request _irq(6, floppy_interrupt,
SA | NTERRUPT| SA_SAMPLE_RANDOM " fl oppy", NULL);

As can be observed, the floppy_interrupt() interrupt service routine must execute with the
interrupts disabled (SA_|I NTERRUPT flag set) and no sharing of the IRQ (SA_SHI RQ flag missing). The
SA_SAMPLE_RANDOMflag set means that accesses to the floppy disk are a good source of random
events to be used for the kernel random number generator. When the operation on the floppy disk is
concluded (either the 1/0 operation on /dev/fdO terminates or the filesystem is unmounted), the
driver releases IRQ 6:

free_irqg(6, NULL);

To insert an i rqacti on descriptor in the proper list, the kernel invokes the setup_irq() function,
passing to it the parametersirqg _nr, the IRQ number, and new (the address of a previously
allocated i rgacti on descriptor). This function:

1. Checks whether another device is already using the irqg _nr IRQ and, if so, whether the
SA SHI RQ flags in the i rgacti on descriptors of both devices specify that the IRQ line can be
shared. Returns an error code if the IRQ line cannot be used.

2. Adds *new (the new irgaction descriptor pointed to by new) at the end of the list to whichirq
_desc[irg _nr]->action points.

3. If no other device is sharing the same IRQ, the function clears the | RQ _DI SABLED,
| RQ_AUTODETECT, | RQ WAI TI NG, and | RQ _| NPROGRESS flags in the f 1 ags field of *new and invokes
the st artup method of the i rq_desc[irqg_nr]->handl er PIC object to make sure that IRQ
signals are enabled.

Here is an example of how setup_irqg() is used, drawn from system initialization. The kernel
initializes the i r g0 descriptor of the interval timer device by executing the following instructions in
the tinme_init() function (see Chapter 6):

struct irgaction irg0 =
{timer_interrupt, SA INTERRUPT, 0, "timer", NULL, NULL};
setup_irqg(0, & rqo0);

First, the i rq0 variable of type i rqgacti on is initialized: the handl er field is set to the address of the
timer_interrupt() function, the fl ags field is set to SA_| NTERRUPT, the nane field is set to "timer",
and the fifth field is set to NULL to show that no dev_i d value is used. Next, the kernel invokes
setup_irq() toinsertirqoO in the list of i rgacti on descriptors associated